https://doi.org/10.46344/JBINO.2025.v14i04.15

SKIN SENSITIZATION RISK ASSESSMENT

Nida tabassum khan¹, Maryam Hussain

Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan

ABSTRACT

As the most prevalent form of immunotoxicity in humans, skin sensitization leading to allergic contact dermatitis is also one of the most common occupational disorders in developed nations, affecting roughly 15–20% of the general population. Hundreds of chemicals, which are frequently found in home and environmental items including detergents, soups, and cosmetics, have been linked to skin sensitization. In order to develop new therapeutic approaches and to identify biomarkers that enable the differentiation between sensitizers and irritants, it is imperative that we continue to expand our understanding of the physiopathological events caused by skin sensitizers and involved in the development of ACD and other skin inflammatory diseases. Although some molecules with a crucial role in the physiopathology of ACD have already been identified by a variety of genomic and proteomic techniques, lipidomic analysis has not yet been investigated for this purpose.

KEY WORDS: Contact dermatitis; Sensitization; Cosmetics; Skin; Risk Assessment.

¹ nidatabassumkhan@yahoo.com

INTRODUCTION

Allergy contact dermatitis (ACD) is the clinical manifestation of alleraic reactions, also known as skin sensitization [1]. In order to develop a process for new ingredients and products, one of the most important processes for testing skin safety and risk is skin sensitization testing and risk assessment [2]. It follows a step-by-step methodology that may include analytical assessments, such as preclinical sensitization testing, clinical testing, and benchmarking of the resulting data against similar ingredients and product types [3]. An important part of the skin sensitization risk assessment process is evaluating and understanding the relationship between skin sensitization hazards, such as the components' intrinsic propensity to produce allergic skin sensitization, and actual skin sensitization risk [4].

Chemical allergies were once frequently viewed as all-or-none reactions devoid of thresholds and dose-response relationships [5]. Because no allergy symptoms or indicators appear at the initial contact (often repeated exposures), even large amounts of sensitizer may go undetected. Despite the lack of clinical symptoms, this interaction may cause sensitization [6]. Ultimately, the symptoms of allergic contact dermatitis will undoubtedly result from varying concentrations (greater or lower) of the same sensitizer once sensitization has been established. This is standard "working style" particular immune systems, which essentially in place to combat microbial diseases [7]. According to recent research, the immune response is characterized by an asymptomatic "learning phase" (also known as the primary immune response or sensitization phase) and an effector phase (also known the secondary as

immunological response or elicitation phase) [8,9].

Between 1 to 5.4% of people are thought to be allergic to a cosmetic component [10]. Reactions are more common in women and account for about 80% of cases in individuals between the ages of 20 and 60 [11]. Allergy contact dermatitis can be brought on by common cosmetics including sunscreen, foundation, lotions [12]. The idea of cosmetics has existed for as long as civilization and humanity, and people have always wanted to look beautiful. The desire to make one's body look beautiful has existed since the tribal era. As consumers, we are always drawn to beauty and personal care goods, but in addition to making us feel good and look good, these items can have a sinister side [13]. All of the harmful chemicals and poisonous substances used in these products are present in amounts that are unacceptable. These substances have the potential to penetrate the skin other and organs, producina carcinogenicity, and to have major negative effects on the skin [14].It is estimated that 1-5.4% of the population is sensitized to a cosmetic ingredient. About 80% of reactions occur in patients aged 20-60 years and are seen more frequently in women [15]. The concept of cosmetic is as old as mankind and civilization and people want to look beautiful one way or the other. Since the tribal days, there has been this urge to beautify one's own body and look beautiful. As a consumer, we are continuously attracted to using beauty and personal care products, but along with having us feel healthy and look beautiful, these products have a deep dark side, too. All these toxic ingredients and hazardous chemicals used in these products are comprised in bevond acceptable limits [16]. These chemicals may cause serious ill effects on skin and may also enter the skin and other organs causing carcinogenicity [17].

Substances improve used to the appearance of the human body are referred to as cosmetics. Cosmetics are often made up of chemical components, some of which come from natural sources and many of which are manmade [18]. Skin creams, lotions, lipsticks, nail polishes, and makeup for the face and eyes are of cosmetic items examples Fragrances and preservations are the primary components of cosmetics. More than 5000 distinct types of fragrances are utilized in products, and they are the primary source of skin issues [20]. Additionally, preservatives are the second most frequent cause of skin issues [21].

In addition to sunscreens, various skin care and cosmetic items frequently result in adverse reactions and are the leading cause of hospitalization for alleraic contact dermatitis [22]. One to three percent of people are thought to be allergic to a cosmetic or one of its ingredients. Seven hundred responses were recorded over a one-year period in a study of 30,000 consumers in the United States [23]. It is commonly known that sunscreen prevents sunburn. Nonetheless, some data suggests wearina sunscreen may have detrimental effects on one's health contain dubious because sunscreens substances that can have negative consequences on the skin and body, including disruption, allergic hormone reactions, premature aging, and increased risk of cancer [24]. Along with their increased media exposure and the growing number of goods being created and offered for sale, cosmetics are used by the general public in an unending number

of ways these days [25]. During each fiveyear period, the top three allergens, aside from three metals, were cosmetic ingredients: two fragrances (fragrance mixed I, linalool hydro peroxide) and two preservatives (paraben mix, methylisothiazolinone) [26].

CONCLUSION

The growing incidence of allergic contact dermatitis from cosmetic products is a public health issue of great concern since most of the consumers are not aware of the dangerous chemicals used in cosmetics. Even with all the regulations, most of the cosmetics contain skin allergens and irritants that cause severe skin conditions, involving a large proportion of the population, particularly females.

REFERENCES

- Robinson, M. K., Gerberick, G. F., Ryan, C. A., McNamee, P., White, I. R., & Basketter, D. A. (2000). The importance of exposure estimation in the assessment of skin sensitization risk. Contact Dermatitis, 42(5), 251-259.
- Botham, P. A., Basketter, D. A., Maurer, T., Mueller, D., Potokar, M., & Bontinck, W. J. (1991). Skin sensitization—a critical review of predictive test methods in animals and man. Food and Chemical Toxicology, 29(4), 275-286.
- 3. Kimber, I., Basketter, D. A., Berthold, K., Butler, M., Garrigue, J. L., Lea, L., ... & Wiemann, C. (2001). Skin sensitization testing in potency and risk assessment. *Toxicological Sciences*, 59(2), 198-208.
- Basketter, D. A., Jefferies, D., Safford, B. J., Gilmour, N. J., Jowsey, I. R., McFadden, J., ... & Kullavanijaya, P. (2006). The impact of exposure variables on the induction of skin sensitization. Contact Dermatitis, 55(3), 178-185.

- 5. Griem, P., Goebel, C., & Scheffler, H. (2003). Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regulatory Toxicology and Pharmacology, 38(3), 269-290.
- Basketter, D., Darlenski, R., & Fluhr, J. W. (2008). Skin irritation and sensitization: Mechanisms and new approaches for risk assessment:
 Skin sensitization. Skin pharmacology and physiology, 21 (4), 191-202.
- 7. Hoffmann, S., Kleinstreuer, N., Alépée, N., Allen, D., Api, A. M., Ashikaga, T., ... & Petersohn, D. (2018). Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Critical reviews in toxicology, 48(5), 344-358.
- 8. Steiling, W. (2016). Safety evaluation of cosmetic ingredients regarding their skin sensitization potential. Cosmetics, 3(2), 14.
- Lim, D. S., Roh, T. H., Kim, M. K., Kwon, Y. C., Choi, S. M., Kwack, S. J., ... & Lee, B. M. (2018). Non-cancer, cancer, and dermal sensitization risk assessment of heavy metals in cosmetics. Journal of Toxicology and Environmental Health, Part A, 81 (11), 432-452.
- 10. Nigam, P. K. (2009). Adverse reactions to cosmetics and methods of testing. *Indian Journal of Dermatology, Venereology and Leprology*, 75, 10.
- 11. Martins, M. S., Ferreira, M. S., Almeida, I. F., & Sousa, E. (2022). Occurrence of allergens in cosmetics for sensitive skin. Cosmetics, 9(2), 32.
- 12. Brenaut, E., Nezet, P., Misery, L., Legeas, C., Roudot, A. C., & Ficheux, A. S. (2021). Use of cosmetic products in real life by women with facial sensitive skin: results from an exposure study and comparison with controls. Skin pharmacology and physiology, 34(6), 363-374.
- 13. Amasa, W., Santiago, D., Mekonen, S., & Ambelu, A. (2012). Are cosmetics used in developing countries safe? Use and

- dermal irritation of body care products in Jimma Town, Southwestern Ethiopia. *Journal of toxicology*, 2012(1), 204830.
- 14. Berardesca, E., Farage, M., & Maibach, H. (2013). Sensitive skin: an overview. International journal of cosmetic science, 35(1), 2-8.
- 15. Willis, C. M., Shaw, S., De Lacharriere, O., Baverel, M., Reiche, L., Jourdain, R., ... & Wilkinson, J. D. (2001). Sensitive skin: an epidemiological study. *British Journal of Dermatology*, 145(2), 258-263.
- 16. Panico, A., Serio, F., Bagordo, F., Grassi, T., Idolo, A., De Giorgi, M., ... & De Donno, A. (2019). Skin safety and health prevention: an overview of chemicals in cosmetic products. Journal of preventive medicine and hygiene, 60(1), E50.
- 17. Roberts, D. W., & Aptula, A. O. (2008). Determinants of skin sensitisation potential. Journal of Applied Toxicology: An International Journal, 28(3), 377-387.
- 18. Goossens, A. (2011). Contact-allergic reactions to cosmetics. *Journal of allergy*, 2011(1), 467071.
- 19. Orton, D. I., & Wilkinson, J. D. (2004). Cosmetic allergy: incidence, diagnosis, and management. American journal of clinical dermatology, 5, 327-337.
- 20. Engasser, P., Long, T., McNamee, P., Schlatter, H., & Gray, J. (2007). Safety of cosmetic products. *Journal of cosmetic dermatology*, 6, 23-31.
- 21. Farage, M. A., & Maibach, H. I. (2010). Sensitive skin: closing in on a physiological cause. Contact dermatitis, 62(3), 137-149.
- 22. Uter, W., Geier, J., Bauer, A., & Schnuch, A. (2013). Risk factors associated with methylisothiazolinone contact sensitization. Contact Dermatitis, 69(4), 231-238.
- 23. Yazar, K. (2014). Consumers, cosmetics and skin sensitizers. Karolinska Institutet (Sweden).

- 24. Balato, A., Balato, N., Megna, M., Raimondo, A., Cantelli, M., Cirillo, T., & Patruno, C. (2012). The laboratory role in the assessment of sensitization and irritation potential of cosmetics. ANNALI ITALIANI DI DERMATOLOGIA ALLERGOLOGICA, CLINICA E SPERIMENTALE, 66(1), 9-23.
- 25. Primavera, G., & Berardesca, E. (2005). Sensitive skin: mechanisms and diagnosis. *International journal of cosmetic science*, 27(1), 1-10.
- 26. Uter, W., Geier, J., Bauer, A., & Schnuch, A. (2013). Risk factors associated with methylisothiazolinone contact sensitization. Contact Dermatitis, 69(4), 231-238.

