https://doi.org/10.46344/JBINO.2025.v14i03(a).07

ROLE OF NITROGEN IN RED BLOOD CELL ADHESION AND AGGREGATION IN SICKLE CELL DISEASE

*Emmanuel Ifeanyi Obeagu

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe, E-mail: emmanuelobeagu@yahoo.com, obeagu@gfricau.edu, ORCID: 0000-0002-4538-0161

ABSTRACT

Sickle cell disease (SCD) is a genetic hemoglobinopathy characterized by the polymerization of hemoglobin S, leading to the formation of rigid, sickled red blood cells (RBCs). These abnormally shaped cells have an increased tendency to adhere to the vascular endothelium and aggregate, which contributes to microvascular occlusions and the onset of vaso-occlusive crises. Nitric oxide (NO), a crucial molecule for maintaining vascular homeostasis, plays a significant role in regulating RBC adhesion and aggregation. In SCD, the reduced bioavailability of NO due to hemolysis and oxidative stress exacerbates endothelial dysfunction, promoting increased RBC adhesion to the endothelium and enhancing aggregation. In healthy individuals, NO inhibits RBC-endothelial adhesion by modulating the expression of adhesion molecules and promoting vasodilation. However, in SCD, decreased NO levels lead to a pro-adhesive and pro-aggregatory state within the microvasculature. This review explores the role of NO and other nitrogen species in modulating RBC adhesion and aggregation in SCD, highlighting the biochemical mechanisms involved, including the effects of oxidative stress and the formation of peroxynitrite. These disruptions contribute significantly to the pathophysiology of SCD, leading to clinical manifestations such as pain crises, stroke, and organ damage.

Keywords: Nitrogen oxide, Red blood cell adhesion, Aggregation, Sickle cell disease, Endothelial dysfunction

Introduction

Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the betaglobin gene, resulting in the production of hemoglobin S (HbS). Under low-oxygen conditions, HbS polymerizes, causing red blood cells (RBCs) to adopt a sickle shape. These deformed cells exhibit decreased deformability and are prone to forming agaregates, contributing to microvascular occlusion and ischemia. One of the most critical features of SCD pathophysiology is the enhanced adhesion of sickled RBCs to the vascular endothelium, which promotes vaso-occlusion and leads to a variety of complications, including pain crises, stroke, organ damage, and chronic ulcers. While the primary driver of RBC adhesion and aggregation is \blacksquare the mechanical deformation of cells due to sickling, the molecular processes involving nitrogen species, particularly nitric oxide (NO), play a crucial role in regulating these events [1-3]. Nitric oxide is a key regulator of vascular tone, endothelial function, and platelet aggregation. It is produced by endothelial nitric oxide synthase (eNOS) and serves as a potent vasodilator that facilitates smooth blood flow. In addition to its vasodilatory effects, NO also inhibits the adhesion of RBCs to the endothelium by modulating the expression of adhesion molecules and reducing RBC aggregation. In SCD, however, the bioavailability of NO is significantly reduced due to a combination of factors, includina oxidative hemolysis, stress, and increased activity of the enzyme arainase. These factors contribute to endothelial dysfunction, which fosters an environment conducive to increased RBC adhesion and

aggregation. The reduced availability of NO in SCD patients is central to the disease's complications and severity, particularly in relation to microvascular occlusion [4-6].

The pathophysiological consequences of impaired NO signaling are evident in the clinical manifestations of SCD, including pain crises, pulmonary hypertension, stroke, and organ failure. Reduced NO levels are with associated the activation inflammatory pathways, endothelial activation, and increased expression of adhesion molecules such as P-selectin, Eselectin, and vascular cell adhesion molecule-1 (VCAM-1). These adhesion molecules facilitate the binding of sickled RBCs to the endothelium, promoting further aggregation and microvascular obstruction. Additionally, the accumulation of cell-free hemoglobin due to hemolysis contributes to the consumption of NO, further exacerbating endothelial dysfunction and promoting a cycle of increased RBC adhesion and aggregation. As such, understanding the role of nitrogen species, particularly NO, in RBC adhesion and aggregation is vital to unraveling the complexities of SCD pathophysiology [7-10]. In addition to NO, other nitrogen species, such as peroxynitrite (ONOO-), formed by the reaction of NO with superoxide, contribute to the pathogenesis of SCD. Peroxynitrite is a potent oxidant that can modify cellular proteins, lipids, and DNA, leading to endothelial injury and impaired RBC deformability. The formation of peroxynitrite and other reactive nitrogen species (RNS) contributes to the oxidative stress observed in SCD, which further promotes RBC aggregation. The presence

of high levels of RNS in the bloodstream can impair the function of nitric oxide and exacerbate the already disrupted NO signaling, creating a vicious cycle of RBC aggregation and vascular obstruction [11-13].

Aim

The aim of this review article is to explore the role of nitrogen species, particularly nitric oxide (NO) and reactive nitrogen species (RNS), in the pathophysiology of red blood cell (RBC) aggregation and endothelial dysfunction in sickle cell disease (SCD).

Nitric Oxide and Endothelial Function in Sickle Cell Disease

Nitric oxide (NO) plays a crucial role in the regulation of vascular tone, smooth muscle relaxation, and endothelial function. In healthy individuals, NO produced endothelial nitric oxide synthase (eNOS) serves as a potent vasodilator, contributing to the regulation of blood flow and maintaining vascular homeostasis. NO also anti-inflammatory properties inhibits platelet aggregation and leukocyte adhesion to the endothelium. However, in sickle cell disease (SCD), the bioavailability of NO is significantly reduced due to several pathophysiological factors, leading endothelial dysfunction, increased adhesion of sickled red blood cells (RBCs), and vascular complications that are central to the disease [14-15]. In SCD, the primary factor leading to the reduced bioavailability of NO is hemolysis. The breakdown of chronic sickled **RBCs** of cell-free releases large amounts hemoalobin into the bloodstream. Hemoglobin can bind to NO, preventing it from exerting its vasodilatory effects. This

NO consumption of bv cell-free hemoglobin is a major contributor to endothelial dysfunction in SCD. Additionally, the oxidative stress induced by hemolysis and other factors in SCD results in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including peroxynitrite. Peroxynitrite is formed when NO reacts with superoxide, and it can lead to the nitration proteins and damaae endothelium, further impairing NO signaling [16-17].

Endothelial dysfunction in SCD is characterized by the reduced ability of the vasculature to dilate in response endothelial stimuli and an increase in the expression of adhesion molecules such as P-selectin, E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). These adhesion molecules facilitate the binding of sickled RBCs to the endothelial surface, contributing to the formation of microvascular occlusions and the development of vaso-occlusive crises. In addition, endothelial dysfunction in SCD contributes to the increased permeability of blood vessels and the activation of inflammatory pathways, which further exacerbate the pathological processes in the vasculature. The imbalance between and ROS/RNS results in NO inflammatory, pro-adhesive, aggregatory state, which plays a key role in the clinical manifestations of SCD, including pain crises, stroke, and organ [18-19]. The damaae reduced bioavailability in SCD has led to the exploration of therapeutic strateaies aimed at restoring NO signaling to alleviate the associated vascular complications.

One promising approach the is supplementation of L-arginine, the amino acid precursor to NO, to enhance NO production. In patients with SCD, L-arginine levels are often depleted due to increased arginase activity, which competes with eNOS for the substrate. By providing exogenous L-arginine, it is possible to boost NO synthesis and improve endothelial function. Additionally, the use of NO donors, such as inhaled NO gas or sodium nitroprusside, has shown potential in improving vasodilation and reducina microvascular occlusion in SCD patients. Arginase inhibitors, which prevent the degradation of L-arginine, are another avenue of research aimed at increasing NO production and mitigating endothelial dysfunction in SCD [20-21].

Role of Nitrogen Species in Red Blood Cell Aggregation in Sickle Cell Disease

The aggregation of red blood cells (RBCs) is a hallmark feature of sickle cell disease (SCD) and plays a critical role in the pathophysiology of the disease. This agaregation leads to microvascular occlusion, which contributes to the onset of vaso-occlusive crises, pain episodes, and organ damage. In SCD, the presence of sickled, rigid RBCs increases their tendency to adhere to the vascular endothelium and aggregate, exacerbates the risk of blockages in the microcirculation. Nitrogen species, particularly nitric oxide (NO) and reactive species (RNS), significantly nitrogen influence the aggregation of RBCs by modulatina various cellular and biochemical within the processes vasculature [22-23]. Nitric oxide, a critical signaling molecule, is involved in the

regulation of vascular tone and inhibition of platelet aggregation and leukocyte adhesion. Under normal physiological conditions, NO helps to prevent RBC aggregation by promoting vasodilation and reducing the expression of adhesion molecules on the endothelial surface. NO exerts its effects by binding to other hemoglobin and molecules, RBC deformability enhancina reducing their tendency to adhere to the However, endothelium. in SCD. bioavailability of NO is significantly reduced due to a combination oxidative stress. hemolysis, and the consumption of NO by cell-free hemoglobin. The depletion of NO promotes a pro-aggregatory environment, increasing the propensity of sickled RBCs to aggregate and adhere to the endothelium [24-25].

Reactive nitrogen species (RNS), such as peroxynitrite (ONOO-), are also involved in modulating RBC aggregation. Peroxynitrite is formed when NO reacts with superoxide (O2-), producing a potent oxidant that can modify proteins, lipids, and DNA. In the context of SCD, peroxynitrite and other RNS contribute to endothelial dysfunction and increased RBC aggregation modifying cell surface molecules and promoting the activation of inflammatory pathways. Peroxynitrite can also impair the function of nitric oxide. further exacerbating the imbalance between NO and RNS and leading to a vicious cycle of oxidative damage and increased RBC agareagtion. The increased oxidative stress in SCD patients results in the modification of the RBC membrane, decreasing its flexibility and increasing the cells' tendency to aggregate [26-27]. The aggregation of sickled RBCs is further facilitated by the activation of adhesion molecules on the endothelial surface. In SCD, the reduced levels of NO lead to the upregulation of adhesion molecules, such as P-selectin, Eselectin, and vascular cell adhesion molecule-1 (VCAM-1). These molecules facilitate the binding of sickled RBCs to the endothelium, promotina further aggregation and microvascular occlusion. Additionally, the oxidative stress induced by RNS in SCD enhances the expression of these adhesion molecules, creating a proinflammatory, pro-adhesive, and aggregatory environment. The interaction between RBCs and the endothelium, combined with the increased aggregation of sickled RBCs, plays a key role in the pathogenesis of vaso-occlusion and the subsequent complications of SCD, such as pain crises and organ damage [28-29].

Therapeutic Implications and Interventions

In sickle cell disease (SCD), dysregulation of nitrogen particularly nitric oxide (NO) and reactive nitrogen species (RNS), plays a critical role in exacerbating red blood cell (RBC) aggregation, endothelial dysfunction, and microvascular occlusion. The reduction in NO bioavailability due to hemolysis and oxidative stress leads to a pro-aggregatory environment that promotes RBC adhesion to the endothelium, resulting in vasoocclusive crises and the progression of disease-related complications. As a result, therapeutic strategies targeting NO and RNS considerable promise hold ameliorating the pathological processes driving RBC aggregation and related complications in SCD [30-31]. One of the

primary therapeutic strategies aimed at restoring NO signaling in SCD is the supplementation of L-arginine, the amino acid precursor of NO. In SCD, the levels of L-arginine are often depleted due to increased arginase activity, which competes with endothelial nitric oxide synthase (eNOS) for L-arginine. Exogenous supplementation L-arginine has shown to enhance NO production and improve endothelial function. Clinical studies have demonstrated that L-arginine supplementation the can reduce frequency of vaso-occlusive crises. improve endothelial function, and reduce RBC aggregation by restoring the balance between NO and RNS. Additionally, Larginine supplementation has been found to decrease the levels of soluble adhesion and inflammatory molecules markers, crucial factors which are pathogenesis of SCD-related vasculopathy [31-32].

Another promising therapeutic approach involves the use of NO donors, such as inhaled NO gas and sodium nitroprusside, which can increase NO bioavailability in the vasculature. Inhaled NO has been investigated in clinical trials as a means of enhancing vasodilation and reducing the microvascular occlusion that leads to painful crises in SCD patients. While promising results have been observed in terms of reducing vasoconstriction and improving blood flow, the long-term efficacy and safety of inhaled NO remain under investigation. Sodium nitroprusside, a potent vasodilator, has also been used to vascular function in SCD. improve its However, use requires careful monitoring, as prolonged use can lead to

toxicity and other adverse effects [33]. In addition to NO-based therapies, targeting the production of reactive oxygen species (ROS) and RNS presents another avenue for therapeutic intervention. Antioxidant therapies aimed at reducing oxidative stress have been explored to counteract the harmful effects of ROS and peroxynitrite, which contribute to endothelial dysfunction **RBC** and aggregation. For instance, the use of such as vitamin antioxidants acetylcysteine (NAC), and L-carnitine has been shown to reduce oxidative stress and improve RBC deformability in SCD. These antioxidants may help mitigate the cellular damage caused by RNS, restore the balance between NO and ROS, and reduce RBC aggregation. However, while antioxidant therapies have shown potential in preclinical models, clinical trials have yielded mixed results, and further research is necessary to establish their efficacy in managing SCD [34-35]. Arginase inhibitors represent another promising therapeutic intervention aimed at increasing NO production and reducing RBC aggregation. By inhibiting the activity of arginase, which breaks down L-arginine, these inhibitors enhance the can availability of L-arginine for NO production, thus improving endothelial function and reducing the inflammatory environment that drives RBC aggregation. Studies on arginase inhibitors are still in the early stages, but they offer a novel approach to targeting the underlying mechanisms of NO depletion and oxidative stress in SCD. These therapies could be particularly beneficial in combination with other interventions. such L-arginine as

supplementation and antioxidant treatments, to provide a multifaceted approach to managing RBC aggregation and vaso-occlusion in SCD [36-37].

Conclusion

sickle cell disease (SCD), the species. dysregulation of nitrogen particularly nitric oxide (NO) and reactive nitrogen species (RNS), plays a central role in the pathophysiology of red blood cell aggregation, endothelial dysfunction, and vaso-occlusive crises. The imbalance between NO and RNS results in impaired vasodilation, increased oxidative stress, and enhanced RBC adhesion to the endothelium, contributing to the hallmark features of SCD, including microvascular occlusion and pain crises. As a result, targeting the nitrogen cascade—through strategies that restore NO bioavailability, reduce oxidative stress, and inhibit RBC aggregation—holds great promise for mitigating the clinical complications of SCD. Therapeutic approaches such as Larginine supplementation, NO donors, antioxidants, and arginase inhibitors are being explored as potential interventions to restore vascular function, reduce RBC aggregation, and improve patient outcomes. Clinical studies have demonstrated that these interventions can reduce the frequency and severity of vasoocclusive crises, improve endothelial function, and enhance overall quality of life in SCD patients. However, while these therapies show considerable promise, there remains a need for further research to optimize their efficacy, determine longprofiles. term safetv and establish combination treatments that address the multifaceted nature of SCD pathophysiology.

References

- 1. Gupta A. Sickle Cell Anemia and Related Hemoglobinopathies. InDecision Making Through Problem Based Learning in Hematology: A Step-by-Step Approach in patients with Anemia 2024: 269-289. Singapore: Springer Nature Singapore.
- 2. Hassan MS, Nasrin T, Mahalka A, Hoque M, Ali S. A perspective on the genesis, diagnostics, and management of sickle cell disease. Egyptian Journal of Medical Human Genetics. 2024; 25(1):150.
- 3. Rajput HS, Kumari M, Talele C, Sajan C, Saggu V, Hadia R. Comprehensive Overview Of Sickle Cell Disease: Global Impact, Management Strategies, And Future Directions. Journal of Advanced Zoology. 2024; 45(1).
- 4. Obeagu El. Role of Autophagy in Modulating Oxidative Stress in Sickle Cell Disease: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):38-46.
- 5. Obeagu El. Redox Regulation of Hemoglobin in Sickle Cell Disease: A Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):13-9.
- Obeagu EI, Bunu UO, Obeagu GU, Habimana JB. Antioxidants in the management of sickle cell anaemia: an area to be exploited for the wellbeing of the patients. Int Res Med Health Sci. 2023 Sep 11;6:12-7.
- 7. Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@ GI): feasibilities and challenges. Science of The Total Environment. 2024:172883.

- 8. Lin W, Lv X, Wang Q, Li L, Zou G. Nitrogen concentration dependent optical defects transition in single crystal diamond through low pressure high temperature annealing. Vacuum. 2025:114329.
- Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clinical & Experimental Pharmacology & Physiology. 2007 Sep 1;34(9).
- 10. Dijkmans T, Djokic MR, Van Geem KM, Marin GB. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC× GC–FID/SCD/NCD/TOF-MS. Fuel. 2015; 140:398-406.
- 11. Muehle M, Asmussen J, Becker MF, Schuelke T. Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr. Diamond and Related Materials. 2017; 79:150-163.
- 12. Obeagu El, Obeagu GU. Immunization strategies for individuals with sickle cell anemia: A narrative review. Medicine. 2024; 103(38):e39756.
- 13. Obeagu El. Strategies for reducing child mortality due to sickle cell disease in Uganda: a narrative review. Annals of Medicine and Surgery.: 10-97.
- 14. Obeagu El. Erythropoeitin in sickle cell anaemia: a review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-8.
- 15. Obeagu El, Obeagu GU. Malnutrition in sickle cell anemia: prevalence, impact, and interventions: a review. Medicine. 2024 May 17;103(20):e38164.
- 16. Quemada M, Delgado A, Mateos L, Villalobos FJ. Nitrogen fertilization I: The nitrogen balance. In Principles of agronomy

- for sustainable agriculture 2024: 377-401. Cham: Springer International Publishing.
- 17. Krug EC, Winstanley D. The need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling and mass balance studies: I. Terrestrial nitrogen cycle. Science of the total environment. 2002; 293(1-3):1-29.
- 18. Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends in plant science. 2018; 23(12):1116-1130.
- 19. Enwonwu CO, Xu XX, Turner E. Nitrogen metabolism in sickle cell anemia: free amino acids in plasma and urine. The American journal of the medical sciences. 1990; 300(6):366-371.
- 20. Borel MJ, Buchowski MS, Turner EA, Peeler BB, Goldstein RE, Flakoll PJ. Alterations in basal nutrient metabolism increase resting energy expenditure in sickle cell disease. American Journal of Physiology-Endocrinology and Metabolism. 1998; 274(2):E357-364.
- 21. Jackson AA. The use of stable isotopes to study nitrogen metabolism in homozygous sickle cell disease. InGenetic factors in nutrition. 1984: 297-315. Academic Press, New York.
- 22. Schnog JJ, Jager EH, van der Dijs FP, Duits AJ, Moshage H, Muskiet FD, Muskiet FA. Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Annals of Hematology. 2004; 83:371-375.
- 23. Darghouth D, Koehl B, Madalinski G, Heilier JF, Bovee P, Xu Y, Olivier MF, Bartolucci P, Benkerrou M, Pissard S, Colin Y. Pathophysiology of sickle cell disease is mirrored by the red blood cell metabolome. Blood, The Journal of the

- American Society of Hematology. 2011; 117(6):e57-66.
- 24. Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, Hazen SL, Vichinsky EP, Morris SM, Gladwin MT. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. Jama. 2005; 294(1):81-90.
- 25. Zhou Y, Yu X, Nicely A, Cunningham G, Challa C, McKinley K, Nickel R, Campbell A, Darbari D, Summar M, Majumdar S. Amino acid signature during sickle cell pain crisis shows significant alterations related to nitric oxide and energy metabolism. Molecular genetics and metabolism. 2022; 137(1-2):146-152.
- 26. D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment. Haematologica. 2023; 108(12):3418.
- 27. Obeagu El, Obeagu GU. Management of diabetes mellitus patients with sickle cell anemia: challenges and therapeutic approaches. Medicine. 2024; 103(17):e37941.
- 28. Obeagu EI, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive Sickle Cell Disease Patients: A Review. Current Research in Biological Sciences. 2025;1(1):01-8.
- 29. Obeagu El, Obeagu GU. Managing gastrointestinal challenges: diarrhea in sickle cell anemia. Medicine. 2024; 103(18):e38075.

- 30. Obeagu El, Obeagu GU. Living with sickle cell in Uganda: A comprehensive perspective on challenges, coping strategies, and health interventions. Medicine. 2024 Dec 20;103(51):e41062.
- 31. Obeagu El, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Annals of Medicine and Surgery. 2024; 86(10):6021-6036.
- 32. Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle cell disease update: new treatments and challenging nutritional interventions. Nutrients. 2024; 16(2):258.
- 33. Khan SA, Damanhouri G, Ali A, Khan SA, Khan A, Bakillah A, Marouf S, Al Harbi G, Halawani SH, Makki A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease---A special nutritional consideration. Nutrition & metabolism. 2016; 13:1-2.
- 34. Patel S, Patel R, Mukkala SR, Akabari A. Emerging therapies and management approaches in sickle cell disease (SCD): A critical review. Journal of Phytonanotechnology and Pharmaceutical Sciences. 2023; 3(3):1-1.
- 35. Obeagu El, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Annals of Medicine and Surgery. 2024; 86(10):6021-6036.
- 36. Boma PM, Kaponda AA, Panda J, Bonnechère B. Enhancing the management of pediatric sickle cell disease by integrating functional evaluation to mitigate the burden of vaso-occlusive crises. Journal of Vascular Diseases. 2024; 3(1):77-87.
- 37. Obeagu El, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive

Sickle Cell Disease Patients: A Review. Current Research in Biological Sciences. 2025;1(1):01-8.

