https://doi.org/10.46344/JBINO.2025.v14i03.27

HEMOGLOBIN-NITRIC OXIDE INTERACTIONS IN SICKLE CELL DISEASE: MECHANISTIC INSIGHTS

*Emmanuel Ifeanyi Obeagu

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe, E-mail: emmanuelobeagu@yahoo.com, <u>obeague@africau.edu</u>, ORCID: 0000-0002-4538-0161

ABSTRACT

Sickle cell disease (SCD) is a complex hematological disorder marked by chronic hemolysis, inflammation, and recurrent vaso-occlusive crises. A critical but often underemphasized factor contributing to the pathophysiology of SCD is the disruption of nitric oxide (NO) signaling due to excessive interactions with hemoglobin. The release of free hemoglobin into the plasma during hemolysis rapidly scavenges NO, impairing its vasodilatory and antiinflammatory functions. This biochemical imbalance contributes significantly to endothelial dysfunction and vascular complications observed in SCD patients. The bioavailability of NO is further diminished by increased oxidative stress and the release of arginase from lysed erythrocytes, which depletes L-arginine—an essential substrate for endothelial NO synthesis. The resulting NO-deficient environment promotes vasoconstriction, leukocyte adhesion, and platelet activation, escalating the risk of vascular occlusion and organ damage. These processes not only exacerbate the frequency and severity of vaso-occlusive episodes but also contribute to the long-term morbidity associated with SCD, such as pulmonary hypertension and leg ulcers.

Keywords: Hemoglobin, Nitric Oxide, Sickle Cell Disease, Vasculopathy, Oxidative Stress

Introduction

Sickle cell disease (SCD) is a hereditary hemoglobinopathy resulting from a single nucleotide substitution in the β-globin gene, leading to the production of hemoglobin S (HbS). When deoxygenated, HbS undergoes polymerization, causing red blood cells (RBCs) to assume characteristic sickled shape. abnormally shaped cells are prone to and can hemolysis microvasculature, resulting in ischemiareperfusion injury, chronic pain, progressive organ dysfunction. While the mechanical consequences of sickled cells have long been central to understanding SCD pathophysiology, growing evidence points to significant contributions from biochemical and molecular dysregulation, particularly involving nitric oxide (NO) bioavailability [1-3]. Nitric oxide is gaseous signaling molecule synthesized endothelial primarily by nitric oxide synthase (eNOS). It plays a critical role in maintaining vascular homeostasis through vasodilation. inhibition of platelet aggregation, and suppression of endothelial cell activation. In healthy diffuses individuals. NO across membranes and acts on vascular smooth muscle cells, promoting relaxation via cyclic guanosine monophosphate (cGMP)-mediated pathways. Its regulatory functions are tightly controlled by local synthesis, availability of substrates such as L-arginine, and interactions with other molecules, including hemoglobin [4-6]. In the context of SCD, intravascular hemolysis is a central event that disrupts NO homeostasis. The rupture of RBCs

releases cell-free hemoglobin into the

plasma, where it reacts with NO at a rapid rate. This reaction not only reduces the concentration of NO but also generates methemoglobin and nitrate, both of which biologically inactive. Furthermore, hemolysis leads to the release erythrocytic arginase, which depletes Larginine—thereby limiting the substrate required for NO synthesis. The combined effect is a profound reduction in NO bioavailability, contributing to vascular complications that characterize SCD [7-8]. NO-depleted state initiates and This perpetuates endothelial dysfunction, a hallmark of SCD-related vasculopathy. Endothelial cells under reduced NO influence become pro-adhesive and proinflammatory, increasing the expression of adhesion molecules such as VCAM-1 and E-selectin. These changes promote the adhesion of sickled RBCs and leukocytes to the vascular wall, further impeding blood flow and escalating the risk of vasoocclusion. Additionally, reduced NO levels impair the normal anti-thrombotic and anti-proliferative effects on vascular smooth muscle, which may contribute to complications such as pulmonary hypertension [9-10]. Oxidative stress further exacerbates NO dysregulation in SCD. Hemolysis and ischemia-reperfusion injury lead to the generation of reactive oxygen species (ROS), which degrade NO and amplify vascular damage. Free heme, another byproduct of hemolysis, catalyzes oxidative reactions and induces inflammatory signaling cascades. These processes contribute to a vicious cycle in which NO deficiency, oxidative stress, and vascular inflammation mutually reinforce leadina one another, to chronic

endothelial injury and systemic complications [11-12].

Aim

This review aims to critically explore the mechanistic interplay between hemoglobin and nitric oxide in the context of sickle cell disease, elucidating how their disrupted interaction contributes to vascular dysfunction and disease pathophysiology.

Hemoglobin and Nitric Oxide: Physiological Interactions

Under normal physiological conditions, nitric oxide (NO) serves as a critical mediator of vascular tone and cellular signaling, particularly in the endothelium. Synthesized by endothelial nitric oxide synthase (eNOS) from the amino acid Larginine, NO diffuses freely across cell membranes and activates soluble guanylate cyclase in adjacent smooth muscle cells, leading to the production of cyclic guanosine monophosphate (cGMP) and resultant vasodilation. Beyond its vasodilatory effects, NO also inhibits platelet aggregation, leukocyte adhesion, and smooth muscle proliferation, all of which are vital to maintaining vascular integrity and function [13-14]. Hemoglobin (Hb), the oxygen-carrying protein in red blood cells, has a complex relationship with NO. Inside intact erythrocytes, the of NO with oxyhemoglobin (HbO₂) is spatially restricted, allowing for a delicate balance between oxygen and NO signaling. transport Under controlled conditions, NO can bind to the heme moiety of hemoglobin or form Snitrosothiols by interacting with cysteine residues on the globin chain. These interactions serve as part of a physiological

reservoir that modulates NO bioactivity and allows for its controlled release, contributing to hypoxic vasodilation—a mechanism by which blood flow is matched to oxygen demand in tissues [15-17]. The protective compartmentalization of hemoglobin within red blood cells ensures that NO is not rapidly scavenged in the bloodstream. This spatial organization prevents premature NO inactivation and preserves its signaling role in the vascular system. However, when hemoalobin escapes into the plasma—such as during hemolysis—this regulatory mechanism is lost. Cell-free hemoglobin in the plasma reacts with NO at an extremely high rate, forming methemoglobin and nitrate. This reaction not only depletes NO but also disrupts vascular homeostasis, leading to vasoconstriction and endothelial dysfunction. Thus, under physiological conditions, hemoglobin functions in a tightly regulated system that balances oxygen delivery with NO-mediated vascular tone, a balance that is severely disrupted in pathological states such as sickle cell disease [18-20].

Pathophysiological Consequences in Sickle Cell Disease

In sickle cell disease (SCD), the normally interaction balanced between hemoglobin and nitric oxide (NO) becomes pathologically disrupted, primarily due to chronic intravascular hemolysis. The recurrent breakdown of sickled red blood cells releases large quantities of free hemoglobin into the plasma, where it reacts rapidly with NO. This unregulated scavenging of NO leads to a severe depletion of its bioavailability, vascular disruptina homeostasis and

initiating a cascade of harmful vascular events. The loss of NO-mediated vasodilation results in persistent vasoconstriction. heightened vascular resistance, and impaired blood flow—all of which contribute to the frequency and severity of vaso-occlusive crises [21-22]. Beyond vasoconstriction, NO deficiency effects on endothelial profound The function. endothelium becomes activated and expresses increased levels of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and selectins. This pro-inflammatory state promotes adhesion of sickled erythrocytes, leukocytes, and platelets to the vascular wall, further narrowing the vessel lumen obstructing blood flow. These interactions play a pivotal role in the pathogenesis of vaso-occlusion and are closely linked to ischemia-reperfusion injury, tissue hypoxia, and pain episodes characteristic of SCD [23-24].

In addition to hemoglobin-mediated NO depletion, hemolysis in SCD also results in the release erythrocyte-derived of such arginase. Arginase enzymes as competes with eNOS for their common substrate, L-arginine, thereby limiting NO synthesis even further. The combined effect of substrate depletion and NO scavenging establishes a vicious cycle of oxidative stress, endothelial injury, and inflammation. Reactive oxygen species generated during ischemia-(ROS) reperfusion free heme and from exacerbate the oxidative burden. inactivating NO and amplifying endothelial dysfunction [25-26]. These pathophysiological changes contribute to

the development of chronic complications in SCD, such as pulmonary hypertension, leg ulcers, stroke, and renal dysfunction. Pulmonary hypertension, in particular, is strongly associated with hemolysis-driven NO depletion and is a predictor of increased mortality in SCD patients. The inability of the pulmonary vasculature to properly dilate in response to hypoxia is directly linked to diminish NO signaling and increased oxidative stress. Moreover, recurrent endothelial activation and injury remodelina lead to vascular contribute to the chronic progression of end-organ damage [26-27]. The systemic consequences of NO dysregulation extend beyond the vasculature. Impaired NO signaling can affect immune function, as NO also regulates the behavior of immune cells such as macrophages neutrophils. In SCD, this can result in heightened inflammatory responses and increased susceptibility to infections and auto-inflammatory conditions. Additionally, chronic NO deficiency may impair tissue oxygenation and promote metabolic dysregulation, contributing to the overall disease burden [28-29].

Therapeutic Implications and Interventions

Given the central role of nitric oxide (NO) depletion in the pathophysiology of sickle cell disease (SCD), therapeutic strategies aimed at restoring NO bioavailability or mitigating its loss have garnered substantial research interest. One such approach involves the use of L-arainine supplementation, the primary substrate for nitric oxide synthase (NOS). Clinical trials demonstrated have that oral or intravenous L-arginine can enhance NO production. reduce pulmonary

pressures, and improve pain control during vaso-occlusive crises. However, efficacy of this therapy is limited by the concurrent increase in plasma arginase activity, which competes with NOS for Larginine and curtails NO synthesis [30-31]. Inhaled nitric oxide (iNO) therapy is another targeted intervention designed to circumvent systemic NO scavenging by delivering NO directly to the pulmonary vasculature. This approach has shown transient improvement in oxygenation and vasodilation, particularly in acute chest syndrome. However. clinical evaluating the sustained benefits of iNO in reducing vaso-occlusive episodes have yielded mixed results. The transient nature of the response and logistical challenges of continuous inhalation therapy limit its broader applicability [32-33].

A novel class of therapeutic agents phosphodiesterase-5 includes (PDE5) inhibitors, such as sildenafil, which work downstream of NO signaling by preventing breakdown of cyclic guanosine the monophosphate (cGMP). By prolonging the vasodilatory effects of NO, PDE5 inhibitors may improve endothelial function and pulmonary hemodynamics. Although early studies in SCD patients suggested benefits in pulmonary hypertension, later trials revealed an increased risk of pain episodes, raising concerns about their safety profile and prompting a need for careful patient selection [34-35]. Efforts to neutralize free hemoglobin and reduce its NO-scavenging capacity have led to the exploration of hemoglobin-binding agents such as haptoglobin and hemopexin. plasma bind These proteins free hemoglobin and heme. respectively,

facilitating their clearance and preventing oxidative and inflammatory sequelae. Recombinant forms of these scavengers under investigation as potential therapies to protect the vasculature and maintain NO signaling. Another emerging strategy involves arginase inhibition, aimed at preserving L-arginine availability and enhancing endogenous NO synthesis [36]. Beyond pharmacologic interventions, hydroxyurea therapy, the current standard of care in SCD, exerts indirect benefits on NO bioavailability. Hydroxyurea increases fetal hemoglobin levels, reduces hemolysis, and has been shown to elevate NO metabolites through mechanisms involving eNOS activation and reduced oxidative stress. Its multifaceted effects contribute to improved endothelial function and decreased frequency of vaso-occlusive events, highlighting the importance of integrated therapeutic approaches [37].

Conclusion

The intricate interplay between hemoglobin nitric oxide and fundamental to vascular homeostasis, yet in sickle cell disease (SCD), this relationship becomes pathologically altered due to chronic hemolysis and the subsequent release of free hemoglobin into the circulation. This leads to significant nitric depletion, oxide resulting vasoconstriction, endothelial dysfunction, and a cascade of inflammatory and thrombotic events that contribute to both the acute and chronic complications of the disease. These mechanistic insights have highlighted nitric oxide dysregulation as a central contributor to SCD morbidity and mortality. Although some of these strategies have shown promise, others

have been limited by adverse effects, inadequate efficacy, or logistical constraints. Nevertheless, the continued refinement of these therapies, alongside emerging biologics targeting NO scavenging and oxidative stress, offers hope for more effective disease-modifying interventions.

References

- 1. Gupta A. Sickle Cell Anemia and Related Hemoglobinopathies. InDecision Making Through Problem Based Learning in Hematology: A Step-by-Step Approach in patients with Anemia 2024: 269-289. Singapore: Springer Nature Singapore.
- 2. Hassan MS, Nasrin T, Mahalka A, Hoque M, Ali S. A perspective on the genesis, diagnostics, and management of sickle cell disease. Egyptian Journal of Medical Human Genetics. 2024; 25(1):150.
- 3. Rajput HS, Kumari M, Talele C, Sajan C, Saggu V, Hadia R. Comprehensive Overview Of Sickle Cell Disease: Global Impact, Management Strategies, And Future Directions. Journal of Advanced Zoology. 2024; 45(1).
- Obeagu El. Role of Autophagy in Modulating Oxidative Stress in Sickle Cell Disease: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):38-46.
- 5. Obeagu El. Redox Regulation of Hemoglobin in Sickle Cell Disease: A Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):13-9.
- Obeagu El, Bunu UO, Obeagu GU, Habimana JB. Antioxidants in the management of sickle cell anaemia: an area to be exploited for the wellbeing of the patients. Int Res Med Health Sci. 2023 Sep 11;6:12-7.

- 7. Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@ GI): feasibilities and challenges. Science of The Total Environment. 2024:172883.
- 8. Lin W, Lv X, Wang Q, Li L, Zou G. Nitrogen concentration dependent optical defects transition in single crystal diamond through low pressure high temperature annealing. Vacuum. 2025:114329.
- Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clinical & Experimental Pharmacology & Physiology. 2007 Sep 1;34(9).
- 10. Dijkmans T, Djokic MR, Van Geem KM, Marin GB. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC× GC–FID/SCD/NCD/TOF-MS. Fuel. 2015; 140:398-406.
- 11. Muehle M, Asmussen J, Becker MF, Schuelke T. Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr. Diamond and Related Materials. 2017; 79:150-163.
- 12. Obeagu El, Obeagu GU. Immunization strategies for individuals with sickle cell anemia: A narrative review. Medicine. 2024; 103(38):e39756.
- 13. Obeagu EI. Strategies for reducing child mortality due to sickle cell disease in Uganda: a narrative review. Annals of Medicine and Surgery.:10-97.
- 14. Obeagu El. Erythropoeitin in sickle cell anaemia: a review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-8.

- 15. Obeagu El, Obeagu GU. Malnutrition in sickle cell anemia: prevalence, impact, and interventions: a review. Medicine. 2024 May 17;103(20):e38164.
- 16. Quemada M, Delgado A, Mateos L, Villalobos FJ. Nitrogen fertilization I: The nitrogen balance. InPrinciples of agronomy for sustainable agriculture 2024: 377-401. Cham: Springer International Publishing.
- 17. Krug EC, Winstanley D. The need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling and mass balance studies: I. Terrestrial nitrogen cycle. Science of the total environment. 2002; 293(1-3):1-29.
- 18. Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends in plant science. 2018; 23(12):1116-1130.
- 19. Enwonwu CO, Xu XX, Turner E. Nitrogen metabolism in sickle cell anemia: free amino acids in plasma and urine. The American journal of the medical sciences. 1990; 300(6):366-371.
- 20. Borel MJ, Buchowski MS, Turner EA, Peeler BB, Goldstein RE, Flakoll PJ. Alterations in basal nutrient metabolism increase resting energy expenditure in sickle cell disease. American Journal of Physiology-Endocrinology and Metabolism. 1998; 274(2):E357-364.
- 21. Jackson AA. The use of stable isotopes to study nitrogen metabolism in homozygous sickle cell disease. InGenetic factors in nutrition. 1984: 297-315. Academic Press, New York.
- 22. Schnog JJ, Jager EH, van der Dijs FP, Duits AJ, Moshage H, Muskiet FD, Muskiet FA. Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Annals of Hematology. 2004; 83:371-375.

- 23. Darghouth D, Koehl B, Madalinski G, Heilier JF, Bovee P, Xu Y, Olivier MF, Bartolucci P, Pissard Benkerrou Μ. S, Colin Pathophysiology of sickle cell disease is by the red blood mirrored metabolome. Blood, The Journal of the American Society of Hematology. 2011; 117(6):e57-66.
- 24. Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, Hazen SL, Vichinsky EP, Morris SM, Gladwin MT. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. Jama. 2005; 294(1):81-90.
- 25. Zhou Y, Yu X, Nicely A, Cunningham G, Challa C, McKinley K, Nickel R, Campbell A, Darbari D, Summar M, Majumdar S. Amino acid signature during sickle cell pain crisis shows significant alterations related to nitric oxide and energy metabolism. Molecular genetics and metabolism. 2022; 137(1-2):146-152.
- 26. D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment. Haematologica. 2023; 108(12):3418.
- 27. Obeagu El, Obeagu GU. Management of diabetes mellitus patients with sickle cell anemia: challenges and therapeutic approaches. Medicine. 2024; 103(17):e37941.
- 28.Obeagu El, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive Sickle Cell Disease Patients: A Review.

- Current Research in Biological Sciences. 2025;1(1):01-8.
- 29. Obeagu El, Obeagu GU. Managing gastrointestinal challenges: diarrhea in sickle cell anemia. Medicine. 2024; 103(18):e38075.
- 30. Obeagu El, Obeagu GU. Living with sickle cell in Uganda: A comprehensive perspective on challenges, coping strategies, and health interventions. Medicine. 2024 Dec 20;103(51):e41062.
- 31. Obeagu El, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Annals of Medicine and Surgery. 2024; 86(10):6021-6036.
- 32.Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle cell disease update: new treatments and challenging nutritional interventions. Nutrients. 2024; 16(2):258.
- 33. Khan SA, Damanhouri G, Ali A, Khan SA, Khan A, Bakillah A, Marouf S, Al Harbi G, Halawani SH, Makki A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease---A special nutritional consideration. Nutrition & metabolism. 2016; 13:1-2.
- 34. Patel S, Patel R, Mukkala SR, Akabari A. Emerging therapies and management approaches in sickle cell disease (SCD): A critical review. Journal of Phytonanotechnology and Pharmaceutical Sciences. 2023; 3(3):1-1.
- 35. Obeagu El, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Annals of Medicine and Surgery. 2024; 86(10):6021-6036.
- 36. Boma PM, Kaponda AA, Panda J, Bonnechère B. Enhancing the management of pediatric sickle cell

- disease by integrating functional evaluation to mitigate the burden of vaso-occlusive crises. Journal of Vascular Diseases. 2024; 3(1):77-87.
- 37. Obeagu El, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive Sickle Cell Disease Patients: A Review. Current Research in Biological Sciences. 2025;1(1):01-8.

