

<https://doi.org/10.46344/JBINO.2026.v15i01.13>

FROM CRISPR TO CELL-BASED THERAPIES: REVOLUTIONARY STRATEGIES IN SICKLE CELL DISEASE MANAGEMENT

*Emmanuel Ifeanyi Obeagu

Department of Biomedical and Laboratory Science, Africa University, Mutare, Zimbabwe, emmanuelobeagu@yahoo.com, ORCID: 0000-0002-4538-0161

*Corresponding author: Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Mutare, Zimbabwe, E-mail: emmanuelobeagu@yahoo.com, ORCID: 0000-0002-4538-0161, +2348037369912

ABSTRACT

Sickle cell disease is a hereditary hemoglobinopathy characterized by hemoglobin S polymerization, chronic hemolysis, and recurrent vaso-occlusive crises, leading to significant morbidity and mortality. Conventional management strategies—including hydroxyurea therapy, transfusions, and supportive care—address symptoms but do not target the underlying genetic defect. Recent advances in CRISPR-based genome editing, lentiviral gene addition, and cell-based therapies are transforming SCD care by enabling disease-modifying and potentially curative interventions. These approaches allow precise correction of the β -globin mutation or reactivation of fetal hemoglobin, leading to durable improvements in hemoglobin production, reduced vaso-occlusive episodes, and enhanced patient quality of life. This narrative review synthesizes the current state of molecular and cellular therapies in SCD, highlighting mechanistic insights, clinical outcomes, translational potential, and associated ethical considerations. By integrating innovative therapeutic strategies with personalized care, these interventions mark a new era of precision and curative treatment in SCD, offering hope for sustainable remission and improved patient outcomes.

Keywords: Sickle Cell Disease, CRISPR, Gene Therapy, Cell-Based Therapy, Precision Medicine

Introduction

Sickle cell disease (SCD) is a genetically inherited hemoglobinopathy caused by a point mutation in the β -globin gene, resulting in the substitution of valine for glutamic acid at the sixth position of the β -globin chain. This alteration produces hemoglobin S (HbS), which polymerizes under deoxygenated conditions, deforming red blood cells into a sickle shape. The pathological consequences of sickling include vaso-occlusion, chronic hemolytic anemia, systemic inflammation, and progressive organ damage, affecting the spleen, kidneys, lungs, and central nervous system. Globally, SCD affects millions, with the highest prevalence in sub-Saharan Africa, India, the Middle East, and parts of the Americas. The disease imposes a substantial burden on patients, families, and healthcare systems, manifesting as recurrent pain crises, frequent hospitalizations, diminished quality of life, and reduced life expectancy [1-2]. Conventional management strategies—including hydroxyurea therapy, chronic transfusions, and supportive care—primarily focus on symptom alleviation and complication prevention. Hydroxyurea induces fetal hemoglobin (HbF) production, reduces sickling, and decreases the frequency of vaso-occlusive crises (VOCs), but its efficacy varies among patients. Chronic transfusion therapy mitigates anemia and stroke risk but carries complications such as iron overload, alloimmunization, and infection risk. While these approaches have improved patient survival, they do not address the underlying genetic defect that drives disease

pathology, leaving a persistent need for curative therapies [3-4].

Recent advances in molecular medicine, genomic editing, and cellular therapeutics have shifted the paradigm toward disease-modifying and potentially curative strategies. CRISPR/Cas9 genome editing allows precise correction of the pathogenic β -globin mutation or reactivation of fetal hemoglobin by targeting transcriptional repressors such as BCL11A. Lentiviral gene addition introduces functional β -globin genes into autologous hematopoietic stem cells (HSCs), achieving sustained hemoglobin production. Autologous HSC transplantation using gene-modified cells further eliminates the risks of graft-versus-host disease associated with allogeneic transplantation, offering durable remission. These innovations, when integrated with predictive analytics and personalized care, have the potential to transform SCD management from lifelong supportive therapy to curative intervention [5-6]. This narrative review synthesizes current advances in CRISPR-based genome editing, lentiviral gene therapy, and cell-based interventions, highlighting mechanistic insights, translational potential, clinical outcomes, and ethical considerations. By examining these revolutionary strategies, this review emphasizes how modern molecular and cellular technologies are redefining SCD care, enabling precision, proactive, and patient-centered therapeutic approaches.

CRISPR-Based Genome Editing in SCD

CRISPR/Cas9 genome editing has emerged as a revolutionary tool in the

treatment of SCD, offering the potential to directly address the underlying genetic defect responsible for hemoglobin S production. By enabling precise modification of specific genomic sequences, CRISPR allows either correction of the pathogenic β -globin mutation or modulation of regulatory pathways to increase fetal hemoglobin (HbF) levels, thereby reducing sickling and hemolysis [7].

1. Mechanisms and Molecular Targets

CRISPR-based strategies in SCD primarily pursue two approaches:

1. Direct Correction of the β -Globin Mutation:

Mutation: Using homology-directed repair (HDR), CRISPR can target the single nucleotide mutation in the β -globin gene and restore the normal sequence. This approach directly eliminates the production of HbS, allowing red blood cells to function normally under hypoxic conditions [8].

2. Fetal Hemoglobin Reactivation:

Another widely explored approach involves disrupting the expression of HbF repressors such as BCL11A. By editing regulatory elements in hematopoietic stem cells (HSCs), CRISPR can reactivate the production of HbF, which inhibits polymerization of HbS and mitigates sickling. Recent developments in base editing and prime editing offer enhanced precision, reducing double-strand DNA breaks and minimizing potential off-target effects [9].

2. Clinical Translation and Efficacy

Early-phase clinical trials of autologous CRISPR-edited HSC transplantation have demonstrated promising results. Patients receiving genetically modified cells show

robust induction of HbF, improved hemoglobin levels, and a significant reduction in vaso-occlusive crises (VOCs). In many cases, treated individuals experienced complete cessation of severe pain episodes and reduced reliance on transfusions, illustrating the potential for long-term remission [10].

3. Safety Considerations

Despite its promise, CRISPR therapy carries risks that must be carefully managed. Potential off-target editing, unintended insertions or deletions, and genomic instability are primary concerns. Strategies to mitigate these risks include using high-fidelity Cas9 variants, optimizing guide RNA specificity, and employing *ex vivo* editing with thorough genomic screening prior to reinfusion. Long-term follow-up is essential to monitor for potential oncogenic transformation or hematologic complications [11-12].

4. Advantages and Future Directions

CRISPR-based genome editing offers several advantages over conventional therapies: it targets the root cause of SCD, reduces dependence on lifelong transfusions or hydroxyurea therapy, and allows the use of autologous cells, eliminating graft-versus-host complications. Future directions include refining delivery systems, enhancing editing efficiency in HSCs, and integrating predictive analytics to optimize patient selection and therapeutic outcomes. Emerging technologies, such as base editing and prime editing, further promise to enhance safety and efficacy, expanding the applicability of CRISPR therapies to a broader patient population [13-14].

Lentiviral Gene Addition Therapy

Lentiviral gene addition therapy has emerged as a groundbreaking strategy in the treatment of SCD, offering a method to introduce functional β -globin genes into autologous hematopoietic stem cells (HSCs). Unlike CRISPR-based approaches, which directly edit the genome, lentiviral vectors provide stable integration of therapeutic genes, ensuring sustained production of functional hemoglobin and mitigating the effects of HbS polymerization [15-16].

1. Mechanism of Action

In lentiviral gene addition, autologous HSCs are harvested from the patient and transduced *ex vivo* with a lentiviral vector containing a functional β -globin gene. The modified cells are then reinfused following myeloablative or reduced-intensity conditioning. Once engrafted, these genetically modified stem cells produce red blood cells containing functional hemoglobin, reducing sickling, hemolysis, and downstream complications. This approach effectively transforms the patient's hematopoietic system into a continuous source of healthy erythrocytes [17-18].

2. Clinical Efficacy

Clinical trials have demonstrated significant therapeutic benefits of lentiviral gene therapy in SCD. Treated patients exhibit increased total hemoglobin levels, sustained expression of therapeutic hemoglobin, and marked reductions in VOCs and transfusion requirements. Pediatric and adult patients have shown improved hematologic parameters, decreased hemolytic markers, and enhanced quality of life. These outcomes

highlight the potential for durable remission and disease modification [19-20].

3. Advantages

Lentiviral gene therapy offers several advantages over conventional approaches:

- **Autologous Nature:** Use of the patient's own stem cells eliminates the risk of graft-versus-host disease associated with allogeneic transplantation.
- **Sustained Hemoglobin Expression:** Stable integration ensures long-term therapeutic effects without ongoing intervention.
- **Applicability:** Can be applied to patients lacking matched donors for conventional HSCT [21].

4. Limitations and Considerations

Despite its promise, lentiviral gene addition therapy has limitations:

- **Insertional Mutagenesis:** Integration of viral vectors into the genome carries a theoretical risk of activating oncogenes, necessitating careful vector design and long-term monitoring.
- **Conditioning Requirements:** Pre-transplant conditioning carries its own risks, including myelosuppression and infection.
- **Complexity and Cost:** *Ex vivo* manipulation of HSCs requires specialized infrastructure, limiting widespread accessibility, particularly in resource-limited regions [22].

Autologous Hematopoietic Stem Cell Transplantation (HSCT)

Autologous HSCT has emerged as a cornerstone in curative strategies for SCD, particularly when combined with gene-editing or gene-addition approaches. Unlike allogeneic transplantation, which

relies on donor stem cells and carries the risk of graft-versus-host disease (GVHD) and immune rejection, autologous HSCT utilizes the patient's own hematopoietic stem cells (HSCs). When these cells are genetically modified *ex vivo*—via CRISPR/Cas9 or lentiviral vectors—autologous HSCT offers the potential for durable disease modification without the immunologic complications associated with allogeneic transplantation [23-24].

1. Mechanisms and Methodology

The process of autologous HSCT involves the collection of HSCs from the patient, followed by *ex vivo* genetic modification to either correct the β -globin mutation, reactivate fetal hemoglobin (HbF), or introduce functional β -globin genes. The patient then undergoes myeloablative or reduced-intensity conditioning to create space in the bone marrow for engraftment. Following reinfusion of the modified cells, these HSCs repopulate the bone marrow and generate erythrocytes with normal or therapeutic hemoglobin, effectively reducing or eliminating sickling events [25-26].

2. Clinical Outcomes and Efficacy

Recent clinical studies report encouraging outcomes for autologous HSCT in SCD. Patients receiving genetically modified autologous HSCs exhibit:

- Sustained increases in total hemoglobin and HbF levels.
- Substantial reductions in vaso-occlusive crises (VOCs) and transfusion dependence.
- Improvement in hemolytic markers and organ function.

- Enhanced overall quality of life, including physical activity tolerance and psychosocial well-being. These results demonstrate that autologous HSCT, when paired with molecular therapies, offers a durable, disease-modifying effect that can approach a functional cure in carefully selected patients [27].

3. Advantages of Autologous HSCT

Autologous HSCT provides several key advantages:

- **Elimination of GVHD Risk:** The use of the patient's own cells removes the risk of immunologic complications.
- **Compatibility:** Autologous cells avoid donor mismatch issues, increasing the pool of eligible patients.
- **Synergy with Genetic Therapies:** Integration with CRISPR or lentiviral gene therapy enables precise correction or modification at the molecular level, enhancing efficacy [28].

4. Limitations and Challenges

Despite its promise, autologous HSCT has limitations:

Conditioning	Regimens:
Myeloablative or reduced-intensity conditioning carries risks, including infection, cytopenias, and organ toxicity.	Myeloablative or reduced-intensity conditioning carries risks, including infection, cytopenias, and organ toxicity.
Engraftment Efficiency:	Successful long-term outcomes depend on effective stem cell collection, <i>ex vivo</i> manipulation, and engraftment.
Access and Cost:	The procedure requires specialized infrastructure, trained personnel, and significant financial resources, limiting availability in resource-limited settings.

Translational and Clinical Implications

The rapid advancements in CRISPR-based genome editing, lentiviral gene addition, and autologous hematopoietic stem cell transplantation (HSCT) have significant translational and clinical implications for sickle cell disease (SCD). By moving from bench to bedside, these technologies are redefining the traditional management paradigm and enabling personalized, disease-modifying, and potentially curative interventions [29-30].

1. Precision Medicine and Personalized Therapy

Translational application of gene- and cell-based therapies allows clinicians to tailor interventions based on individual genetic profiles and disease phenotypes. CRISPR and lentiviral strategies can be customized to correct specific mutations or modulate fetal hemoglobin levels, providing **b.** Personalized approaches optimize efficacy, minimize adverse events, and reduce unnecessary interventions, transforming SCD care from a reactive to a proactive model [31-32].

2. Reduction in Morbidity and Mortality

Clinical integration of these advanced therapies has the potential to substantially reduce SCD-related morbidity and mortality. Early-phase trials report decreased frequency of VOCs, lower transfusion requirements, improved hemolytic parameters, and enhanced organ function. By addressing the molecular root of disease, these therapies offer durable benefits that extend beyond symptom management, potentially altering the natural history of SCD [33-34].

3. Integration with Diagnostic and Monitoring Innovations

The clinical impact of these therapies is amplified when combined with advanced diagnostics and continuous patient monitoring. Point-of-care genetic testing facilitates rapid patient selection for appropriate interventions, while wearable biosensors and telemedicine platforms enable real-time tracking of physiological parameters and early detection of complications. This integration ensures timely intervention, improves therapy adherence, and enhances overall treatment outcomes [35-36].

4. Health System and Resource Implications

While transformative, these therapies present challenges for healthcare systems, particularly in resource-limited regions with high SCD prevalence. Implementation requires infrastructure for cell collection, ex vivo manipulation, genetic editing, and post-transplant monitoring. However, long-term reductions in hospitalizations, transfusions, and SCD-related complications may offset initial costs, making these therapies economically viable over time and improving patient quality of life [37-38].

5. Ethical and Regulatory Considerations

Translating gene- and cell-based therapies into clinical practice raises critical ethical and regulatory questions. Ensuring informed consent, equitable access, long-term safety monitoring, and adherence to genomic regulations is essential. Moreover, balancing the promise of curative therapy with the risks of off-target effects, insertional mutagenesis, or conditioning-related toxicity requires careful clinical governance. Collaborative frameworks between researchers, clinicians,

policymakers, and patient advocacy groups are vital to facilitate safe and responsible translation [39-40].

Conclusion

Recent advances in CRISPR-based genome editing, lentiviral gene addition, and autologous HSCT have ushered in a new era in SCD management, transforming it from supportive care to precision, disease-modifying, and potentially curative therapy. By directly targeting the underlying β -globin mutation or reactivating fetal hemoglobin, these strategies address the root cause of SCD, offering durable improvements in hemoglobin production, reduction in vaso-occlusive crises, and enhanced patient quality of life. Integration of these molecular and cellular therapies with advanced diagnostics, real-time monitoring, and personalized treatment planning enables proactive and patient-centered care, optimizing clinical outcomes while minimizing complications. Beyond clinical efficacy, these innovations have significant implications for healthcare systems, potentially reducing hospitalizations, transfusion dependence, and long-term organ damage, particularly in high-burden regions.

While challenges remain—including equitable access, long-term safety, ethical governance, and infrastructure requirements—the potential of these revolutionary approaches is undeniable. By bridging laboratory discoveries with real-world clinical application, CRISPR, lentiviral, and autologous HSCT strategies mark a transformative shift in SCD management, offering hope for sustained remission and improved life expectancy. Continued

research, careful clinical translation, and global collaboration will be critical to fully realize their potential and ensure that these therapies benefit all patients affected by SCD.

References

1. Inusa, B. P. D., Hsu, L. L., Kohli, N., Patel, A., Ominu-Evbota, K., Anie, K. A., & Atoyebi, W. (2019). Sickle Cell Disease-Genetics, Pathophysiology, Clinical Presentation and Treatment. *International journal of neonatal screening*, 5(2), 20. <https://doi.org/10.3390/ijns5020020>
2. Salinas Cisneros, G., & Thein, S. L. (2020). Recent Advances in the Treatment of Sickle Cell Disease. *Frontiers in physiology*, 11, 435. <https://doi.org/10.3389/fphys.2020.00435>
3. Adewoyin A. S. (2015). Management of sickle cell disease: a review for physician education in Nigeria (sub-saharan Africa). *Anemia*, 2015, 791498. <https://doi.org/10.1155/2015/791498>
4. Liu, J., Yang, L., Liu, D., Wu, Q., Yu, Y., Huang, X., Li, J., & Liu, S. (2025). The role of multi-omics in biomarker discovery, diagnosis, prognosis, and therapeutic monitoring of tissue repair and regeneration processes. *Journal of orthopaedic translation*, 54, 131–151. <https://doi.org/10.1016/j.jot.2025.07.006>
5. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. *Frontiers in oncology*, 10, 1387. <https://doi.org/10.3389/fonc.2020.01387>
6. Kalpatthi, R., & Novelli, E. M. (2018). Measuring success: utility of biomarkers in sickle cell disease clinical trials and care. *Hematology. American Society of Hematology. Education Program*, 2018(1),

482–492.
<https://doi.org/10.1182/asheducation-2018.1.482>

7. Conran, N., & Belcher, J. D. (2018). Inflammation in sickle cell disease. *Clinical hemorheology and microcirculation*, 68(2-3), 263–299. <https://doi.org/10.3233/CH-189012>

8. Ansari, J., & Gavins, F. N. E. (2019). Ischemia-Reperfusion Injury in Sickle Cell Disease: From Basics to Therapeutics. *The American journal of pathology*, 189(4), 706–718. <https://doi.org/10.1016/j.ajpath.2018.12.012>

9. Dash, U. C., Bhol, N. K., Swain, S. K., Samal, R. R., Nayak, P. K., Raina, V., Panda, S. K., Kerry, R. G., Duttaroy, A. K., & Jena, A. B. (2025). Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. *Acta pharmaceutica Sinica. B*, 15(1), 15–34. <https://doi.org/10.1016/j.apsb.2024.10.004>

10. S. S., Hegde, S. V., Agarwal, S. V., Ns, D., Pillai, A., Shah, S. N., & S, R. (2024). Biomarkers of Oxidative Stress and Their Clinical Relevance in Type 2 Diabetes Mellitus Patients: A Systematic Review. *Cureus*, 16(8), e66570. <https://doi.org/10.7759/cureus.66570>

11. Mohammad, S. N. N. A., Iberahim, S., Wan Ab Rahman, W. S., Hassan, M. N., Edinur, H. A., Azlan, M., & Zulkafli, Z. (2022). Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. *Diagnostics (Basel, Switzerland)*, 12(6), 1374. <https://doi.org/10.3390/diagnostics12061374>

12. Mikobi, T. M., Tshilobo Lukusa, P., Aloni, M. N., Lumaka, A. Z., Kaba, D. K., Devriendt, K., Matthijs, G., Mbuyi Muamba, J. M., & Race, V. (2018). Protective BCL11A and HBS1L-MYB polymorphisms in a cohort of 102 Congolese patients suffering from sickle cell anemia. *Journal of clinical laboratory analysis*, 32(1), e22207. <https://doi.org/10.1002/jcla.22207>

13. Smith, A., & McCulloh, R. J. (2015). Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. *Frontiers in physiology*, 6, 187. <https://doi.org/10.3389/fphys.2015.00187>

14. Schaer, D. J., Vinchi, F., Ingoglia, G., Tolosano, E., & Buehler, P. W. (2014). Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. *Frontiers in physiology*, 5, 415. <https://doi.org/10.3389/fphys.2014.00415>

15. Heeney, M. M., & Ware, R. E. (2010). Hydroxyurea for children with sickle cell disease. *Hematology/oncology clinics of North America*, 24(1), 199–214. <https://doi.org/10.1016/j.hoc.2009.11.002>

16. Bodaghi, A., Fattahi, N., & Ramazani, A. (2023). Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. *Helijon*, 9(2), e13323. <https://doi.org/10.1016/j.helijon.2023.e13323>

17. Qoronfleh, M. W., & Al-Dewik, N. (2025). Cancer Biomarkers: Reflection on Recent Progress, Emerging Innovations, and the Clinical Horizon. *Cancers*, 17(18), 2981. <https://doi.org/10.3390/cancers17182981>

18. Abraham, A. A., & Tisdale, J. F. (2021). Gene therapy for sickle cell disease: moving from the bench to the bedside. *Blood*, 138(11), 932–941. <https://doi.org/10.1182/blood.2019003776>

19. Germino-Watnick, P., Hinds, M., Le, A., Chu, R., Liu, X., & Uchida, N. (2022). Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. *Cells*, 11(11), 1843. <https://doi.org/10.3390/cells11111843>

20. Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. *Trends in biotechnology*, 31(7), 397–405. <https://doi.org/10.1016/j.tibtech.2013.04.004>

21. Obeagu, E. I., & Obeagu, G. U. (2024). Malnutrition in sickle cell anemia: Prevalence, impact, and interventions: A Review. *Medicine*, 103(20), e38164. <https://doi.org/10.1097/MD.00000000000038164>

22. Obeagu E. I. (2024). Maximizing longevity: erythropoietin's impact on sickle cell anaemia survival rates. *Annals of medicine and surgery* (2012), 86(3), 1570–1574. <https://doi.org/10.1097/MS9.00000000000001763>

23. Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-Editing Technologies: Principles and Applications. *Cold Spring Harbor perspectives in biology*, 8(12), a023754. <https://doi.org/10.1101/cshperspect.a023754>

24. Watts, J. K., & Corey, D. R. (2012). Silencing disease genes in the laboratory and the clinic. *The Journal of pathology*, 226(2), 365–379. <https://doi.org/10.1002/path.2993>

25. Zhu, Y., Zhu, L., Wang, X., & Jin, H. (2022). RNA-based therapeutics: an overview and prospectus. *Cell death & disease*, 13(7), 644. <https://doi.org/10.1038/s41419-022-05075-2>

26. Glaros, A. K., Razvi, R., Shah, N., & Zaidi, A. U. (2021). Voxelotor: alteration of sickle cell disease pathophysiology by a first-in-class polymerization inhibitor. *Therapeutic advances in hematology*, 12, 20406207211001136. <https://doi.org/10.1177/20406207211001136>

27. Bhalla, N., Bhargav, A., Yadav, S. K., & Singh, A. K. (2023). Allogeneic hematopoietic stem cell transplantation to cure sickle cell disease: A review. *Frontiers in medicine*, 10, 1036939. <https://doi.org/10.3389/fmed.2023.1036939>

28. Obeagu, E. I., & Obeagu, G. U. (2024). Management of diabetes mellitus patients with sickle cell anemia: Challenges and therapeutic approaches. *Medicine*, 103(17), e37941. <https://doi.org/10.1097/MD.00000000000037941>

29. Obeagu, E. I., & Obeagu, G. U. (2024). Managing gastrointestinal challenges: Diarrhea in sickle cell anemia. *Medicine*, 103(18), e38075. <https://doi.org/10.1097/MD.00000000000038075>

30. Gyurkocza, B., Rezvani, A., & Storb, R. F. (2010). Allogeneic hematopoietic cell transplantation: the state of the art. *Expert review of hematology*, 3(3), 285–299. <https://doi.org/10.1586/ehm.10.21>

31. Khurana, K., Mahajan, S., Acharya, S., Kumar, S., & Toshniwal, S. (2024). Clinical Biomarkers of Acute Vaso-Occlusive Sickle Cell Crisis. *Cureus*, 16(3), e56389. <https://doi.org/10.7759/cureus.56389>

32. Silva, D. G., Belini Junior, E., Carrocini, G. C., Torres, L.deS., Ricci Júnior, O., Lobo, C. L., Bonini-Domingos, C. R., & de Almeida, E. A. (2013). Genetic and biochemical markers of hydroxyurea therapeutic response in sickle cell anemia. *BMC medical genetics*,

14, 108. <https://doi.org/10.1186/1471-2350-14-108>

33. McGann, P. T., & Ware, R. E. (2015). Hydroxyurea therapy for sickle cell anemia. *Expert opinion on drug safety*, 14(11), 1749–1758. <https://doi.org/10.1517/14740338.2015.1088827>

34. Chehelgerdi, M., Chehelgerdi, M., Khorramian-Ghahfarokhi, M., Shafieizadeh, M., Mahmoudi, E., Eskandari, F., Rashidi, M., Arshi, A., & Mokhtari-Farsani, A. (2024). Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. *Molecular cancer*, 23(1), 9. <https://doi.org/10.1186/s12943-023-01925-5>

35. Lee, T. L., & Sawai, T. (2024). Navigating equity in global access to genome therapy: expanding access to potentially transformative therapies and benefiting those in need requires global policy changes. *Frontiers in genetics*, 15, 1381172. <https://doi.org/10.3389/fgene.2024.1381172>

36. Djordjevic, D., McFadyen, A., & Anderson, J. A. (2023). Ethical challenges and opportunities in the development and approval of novel therapeutics for rare diseases. *The journal of medicine access*, 7, 27550834231177507. <https://doi.org/10.1177/27550834231177507>

37. Wang, S. X., Huang, Z. F., Li, J., Wu, Y., Du, J., & Li, T. (2024). Optimization of diagnosis and treatment of hematological diseases via artificial intelligence. *Frontiers in medicine*, 11, 1487234. <https://doi.org/10.3389/fmed.2024.1487234>

38. Obeagu, E. I., & Obeagu, G. U. (2024). Implications of climatic change on sickle cell anemia: A review. *Medicine*, 103(6), e37127. <https://doi.org/10.1097/MD.00000000000037127>

39. Obeagu, E. I., Ubosi, N. I., Obeagu, G. U., Egba, S. I., & Bluth, M. H. (2024). Understanding apoptosis in sickle cell anemia patients: Mechanisms and implications. *Medicine*, 103(2), e36898. <https://doi.org/10.1097/MD.00000000000036898>

40. Obeagu, E. I., & Obeagu, G. U. (2024). Telomere Dynamics in Sickle Cell Anemia: Unraveling Molecular Aging and Disease Progression. *Journal of blood medicine*, 15, 313–323. <https://doi.org/10.2147/JBM.S462758>