

<https://doi.org/10.46344/JBINO.2026.v15i01.07>

TECHNOLOGICAL ADVANCEMENTS IN SICKLE CELL ANEMIA: TRANSFORMING DIAGNOSIS, MONITORING, AND TREATMENT

Emmanuel Ifeanyi Obeagu

Department of Biomedical and Laboratory Science, Africa University, Mutare, Zimbabwe, emmanuelobeagu@yahoo.com, ORCID: 0000-0002-4538-0161

*Corresponding author: Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Mutare, Zimbabwe,

E-mail: emmanuelobeagu@yahoo.com,

ABSTRACT

Sickle cell anemia is a hereditary hemoglobinopathy marked by hemoglobin S polymerization, chronic hemolysis, and recurrent vaso-occlusive crises, resulting in significant morbidity and reduced quality of life. Traditional care approaches, reliant on episodic clinical visits and symptomatic management, often fail to capture the dynamic progression of the disease. Recent technological advancements are transforming SCA management by enhancing diagnostic accuracy, real-time monitoring, and targeted therapeutic interventions. Innovations in high-throughput genomic diagnostics, point-of-care hemoglobin testing, wearable biosensors, telemedicine platforms, and gene- and cell-based therapies are enabling early detection, personalized treatment, and proactive crisis prevention. These tools improve clinical outcomes, empower patients, and optimize healthcare resource utilization. However, challenges including accessibility, data security, ethical considerations, and equitable implementation remain. This narrative review synthesizes current technological innovations in SCA care and discusses their translational potential, emphasizing a shift toward precision, patient-centered, and proactive management of this complex disease.

Keywords: Sickle Cell Anemia, Technological Advancements, Diagnostic Tools, Patient Monitoring, Therapeutic Innovation

Introduction

Sickle cell anemia (SCA) is a genetic hemoglobinopathy caused by a single point mutation in the β -globin gene, leading to the production of abnormal hemoglobin S (HbS). Under deoxygenated conditions, HbS polymerizes, causing erythrocyte deformation, increased rigidity, and the hallmark sickling of red blood cells. These structural changes precipitate vaso-occlusive crises (VOCs), chronic hemolytic anemia, systemic inflammation, and progressive multi-organ damage. Globally, SCA affects over 300,000 newborns annually, with the highest prevalence in sub-Saharan Africa, India, the Middle East, and parts of the Americas. The disease imposes a substantial burden on individuals, families, and healthcare systems, manifesting in recurrent hospitalizations, impaired quality of life, and reduced life expectancy [1-2]. Despite advances in disease-modifying therapies, including hydroxyurea, chronic transfusion protocols, and hematopoietic stem cell transplantation, SCA management remains challenged by clinical heterogeneity, unpredictable crises, and limited access to specialized care. Conventional diagnostic and monitoring approaches—such as hemoglobin electrophoresis, complete blood counts, and periodic clinical assessment—often fail to capture the dynamic nature of the disease. Consequently, patients may experience delayed interventions, exacerbated complications, and suboptimal outcomes [3-4].

Recent technological innovations are redefining the landscape of SCA care.

High-throughput genomic technologies allow rapid identification of β -globin mutations and disease modifiers, facilitating early diagnosis and risk stratification. Point-of-care (POC) devices enable rapid hemoglobin variant detection even in resource-limited settings, supporting timely initiation of therapy. Wearable biosensors and mobile health platforms allow continuous physiologic monitoring, capturing subtle early changes that precede VOCs and other complications. Artificial intelligence (AI) and machine learning (ML) algorithms enhance predictive capabilities, providing personalized risk assessments and data-driven clinical guidance. Meanwhile, gene- and cell-based therapies—including CRISPR/Cas9-mediated editing and lentiviral gene addition—target the genetic root of SCA, offering the prospect of durable remission or cure [5-6]. The convergence of these technologies facilitates precisionmedicine in SCA, transforming the traditional reactive care model into one that is proactive, predictive, and patient-centered. Continuous monitoring, predictive analytics, and personalized therapeutic strategies collectively improve clinical outcomes, enhance quality of life, and empower patients to engage actively in their disease management [7]. This narrative review explores the current state of technological advancements in SCA across three major domains: diagnosis, monitoring, and treatment. It examines the clinical and translational implications of these innovations, their potential to improve patient outcomes, and the ethical

and implementation challenges that must be addressed. By synthesizing the latest developments, this review highlights the transformative potential of technology in redefining SCA care and underscores the path toward equitable, precision-driven management of this complex disease.

Technological Advancements in Diagnosis

Accurate and timely diagnosis is fundamental to effective management of SCA, particularly in high-prevalence regions where early intervention can prevent severe complications. Historically, SCA diagnosis relied on hemoglobin electrophoresis, high-performance liquid chromatography (HPLC), and isoelectric focusing. While effective, these techniques are often laboratory-dependent, time-consuming, and less accessible in resource-limited settings, contributing to delayed detection and intervention. Recent technological advancements are addressing these limitations by improving speed, sensitivity, and accessibility of diagnostic tools [8].

1. Genomic and Molecular Diagnostics

Next-generation sequencing (NGS) has revolutionized the molecular diagnosis of SCA. By enabling high-throughput analysis of the β -globin gene and related modifier loci, NGS allows comprehensive detection of hemoglobinopathies, including compound heterozygosity (e.g., HbS/HbC, HbS/ β -thalassemia) and rare variants. Identification of modifier genes, such as BCL11A and HBS1L-MYB, provides predictive information regarding disease severity, fetal hemoglobin levels, and risk of complications. This molecular insight not only enhances diagnostic precision but also facilitates personalized risk

stratification and early therapeutic planning. Digital PCR (dPCR) and multiplex PCR assays complement NGS by providing highly sensitive and quantitative detection of hemoglobin variants. These approaches are particularly valuable for newborn screening and prenatal diagnosis, where early identification of affected infants enables initiation of prophylactic measures, including penicillin prophylaxis, vaccination, and hydroxyurea therapy, thereby reducing morbidity and mortality [9-10].

2. Point-of-Care and Portable Devices

Point-of-care (POC) diagnostics represent a critical advancement in expanding access to SCA testing, particularly in low-resource and remote settings. Portable microfluidic devices, lateral flow assays, and paper-based immunoassays can rapidly detect hemoglobin S and other variants within minutes, requiring minimal technical expertise. These devices have transformed newborn screening programs in sub-Saharan Africa and other high-burden regions by enabling immediate diagnosis at the point of birth, which is essential for early intervention. Recent innovations have integrated smartphone-based imaging and machine learning to interpret hemoglobin variant assays, providing automated, user-friendly, and highly accurate results. These systems reduce reliance on centralized laboratories, decrease turnaround times, and enhance scalability of screening programs [11-13].

3. High-Resolution Imaging and Flow Cytometry

Advances in imaging cytometry and microfluidic flow analysis allow detailed

evaluation of red blood cell morphology and deformability. Automated imaging systems can quantify the proportion of sickled cells under hypoxic stress, providing insight into disease severity and risk of vaso-occlusion. Flow cytometry-based assays can detect reticulocyte counts, hemolytic activity, and cell adhesion markers, offering functional information beyond genetic characterization. These tools facilitate dynamic monitoring of disease status, bridging the gap between molecular diagnosis and clinical risk assessment [14-15].

4. Integrative Diagnostic Platforms

Emerging integrative diagnostic platforms combine molecular, phenotypic, and clinical data into unified digital frameworks. Such platforms leverage bioinformatics and AI algorithms to provide comprehensive risk assessments, guide therapeutic decisions, and predict disease progression. For example, combining genotypic data with laboratory biomarkers and early clinical indicators allows clinicians to stratify patients according to complication risk and tailor interventions accordingly [16].

Technological Advancements in Patient Monitoring

Effective management of SCA extends beyond accurate diagnosis; continuous and dynamic patient monitoring is critical to anticipate complications, optimize therapy, and improve quality of life. Traditional monitoring relies on periodic clinical visits, laboratory testing, and patient-reported symptoms, which may fail to capture rapid changes in physiological status or the early onset of VOCs. Recent technological innovations in wearable

devices, telemedicine, and digital health platforms are transforming SCA monitoring by enabling **real-time**, continuous, and personalized observation [17].

1. Wearable Biosensors

Wearable biosensors represent a major advancement in the real-time monitoring of SCA patients. Devices capable of measuring heart rate, oxygen saturation, body temperature, and physical activity provide continuous physiological data that reflect disease status. For instance, subtle declines in peripheral oxygen saturation or changes in heart rate variability can precede VOCs by several hours, offering a critical window for early intervention. Advanced wearable devices now integrate multi-parameter sensing, enabling simultaneous monitoring of hemoglobin oxygenation, skin perfusion, and activity levels. Data from these devices can be transmitted via wireless networks to mobile applications or cloud-based platforms, allowing both patients and clinicians to track trends and respond proactively. This continuous monitoring empowers patients to modify behavior—such as rest, hydration, or environmental exposure—to reduce the likelihood of crises [18-19].

2. Telemedicine and Mobile Health Platforms

Telemedicine and mobile health (mHealth) applications have expanded access to care for SCA patients, particularly in underserved regions. These platforms enable remote consultations, symptom logging, and real-time communication with healthcare providers, minimizing the need for frequent hospital visits. Patients can report pain episodes, track

medication adherence, and share physiological data from wearables, allowing clinicians to make timely adjustments to therapy. mHealth systems can also deliver educational content, reminders, and motivational interventions, supporting self-management and improving adherence to disease-modifying treatments such as hydroxyurea. By integrating remote monitoring with clinical oversight, telemedicine platforms enhance continuity of care and reduce hospitalization rates [20-21].

3. Artificial Intelligence and Predictive Analytics

AI and ML have emerged as powerful tools for predicting complications and guiding clinical decisions in SCA. By analyzing data streams from wearables, EHRs, and patient-reported outcomes, AI algorithms can detect patterns indicative of impending VOCs, hemolytic crises, or other complications. Predictive models allow clinicians to anticipate events and initiate preemptive interventions, shifting care from reactive to proactive management. Some AI platforms utilize environmental data—including temperature, humidity, and air quality—to refine predictions, recognizing that VOCs can be triggered by environmental stressors. Moreover, digital twins—virtual representations of individual patients—enable simulation of disease progression and response to interventions, providing a personalized framework for monitoring and treatment optimization [22-23].

4. Integrative Monitoring Systems

Integrative digital platforms combine wearable biosensor data, AI-driven analytics, and patient-reported outcomes

to provide a holistic view of patient health. These systems enable trend analysis, risk stratification, and alert generation for early clinical intervention. By integrating multiple sources of information, clinicians can identify subtle physiologic deviations before they manifest as overt crises, enhancing patient safety and improving long-term outcomes [24].

5. Impact on Clinical Outcomes and Patient Empowerment

The application of these monitoring technologies has demonstrated tangible benefits, including reduced hospitalization rates, earlier detection of VOCs, and improved adherence to therapy. Continuous monitoring enhances patient empowerment, enabling proactive self-management and fostering engagement with care teams. Psychosocial benefits also arise, as patients gain confidence in understanding and controlling their condition, which contributes to overall quality of life [25].

Technological Advancements in Treatment

Treatment of SCA has historically focused on symptom management, prevention of complications, and supportive care, including hydration, analgesics, and blood transfusions. While these interventions alleviate immediate morbidity, they do not address the underlying molecular defect. Recent technological and biomedical innovations have transformed therapeutic strategies, enabling targeted, personalized, and potentially curative interventions. These advancements span pharmacologic therapies, gene- and cell-based approaches, and data-driven personalized treatment planning [26].

1. Advanced Pharmacologic Therapies

Pharmacologic innovation in SCA is increasingly informed by molecular insights into hemoglobin polymerization, erythrocyte deformability, and vaso-occlusion. Hydroxyurea, a long-standing disease-modifying therapy, remains a cornerstone by inducing fetal hemoglobin (HbF) synthesis, reducing sickling, and lowering the incidence of VOCs. Recent FDA-approved agents have expanded therapeutic options. Voxelotor increases hemoglobin oxygen affinity, stabilizing red blood cells and reducing hemolysis. Crizanlizumab, an anti-P-selectin monoclonal antibody, targets adhesion pathways critical to vaso-occlusion, reducing the frequency of pain crises. These therapies, when integrated with real-time monitoring technologies, allow clinicians to tailor dosing and assess individual response, maximizing efficacy while minimizing adverse effects [27-28].

2. Gene Therapy and Gene Editing

Gene- and cell-based therapies represent a paradigm shift in SCA treatment, targeting the genetic root cause. Lentiviral gene addition introduces functional β -globin genes into autologous hematopoietic stem cells, enabling sustained production of normal hemoglobin. Early clinical trials have demonstrated significant reductions in VOCs and transfusion dependence, with durable expression of therapeutic hemoglobin. Gene editing technologies, particularly CRISPR/Cas9, offer precision correction of pathogenic mutations or modulation of fetal hemoglobin regulators, such as BCL11A. Early-phase studies report promising outcomes, including increased

HbF levels, reduced sickling, and long-term clinical remission. These approaches hold the potential for curative therapy, particularly when combined with robust patient monitoring systems that track engraftment, hemoglobin levels, and potential adverse events [29-30].

3. Personalized and Data-Driven Therapeutic Strategies

Technological integration enables the development of personalized treatment algorithms, which combine genomic, phenotypic, and environmental data. Wearable biosensors, telemedicine platforms, and AI-driven predictive models facilitate dynamic assessment of disease activity, guiding timely therapy adjustments. For example, real-time detection of early hypoxemia or increased heart rate variability can prompt preventive interventions, such as tailored analgesic regimens or hydration strategies, reducing crisis severity. Additionally, integrative platforms can identify patients most likely to benefit from advanced therapies such as gene therapy, hydroxyurea optimization, or targeted biologics. This data-driven approach ensures efficient resource allocation and maximizes therapeutic impact, particularly in resource-constrained settings where treatment accessibility is a critical consideration [31-32].

4. Supportive Technologies Enhancing Treatment Outcomes

Innovations in transfusion medicine, such as automated red cell exchange and point-of-care hemoglobin quantification, enhance the safety and effectiveness of conventional interventions. Digital platforms for adherence tracking,

symptom reporting, and medication reminders further complement therapeutic strategies, ensuring sustained patient engagement and compliance. Collectively, these technologies enhance the overall effectiveness of SCA management by reducing complications, preventing hospitalizations, and improving quality of life [33].

Impact on Patient Outcomes and Quality of Life

Technological advancements in SCA management are transforming the patient experience by directly influencing clinical outcomes and quality of life. Traditionally, patients with SCA faced unpredictable VOCs, frequent hospitalizations, and chronic organ damage, all of which contributed to significant morbidity and psychosocial burden. Integration of diagnostic innovations, continuous monitoring, and personalized therapeutic strategies is reshaping this landscape, enabling proactive, patient-centered care [34].

1. Reduction in Vaso-Occlusive Crises and Complications

Wearable biosensors and AI-driven predictive analytics allow early identification of physiological changes preceding VOCs, such as declines in oxygen saturation or altered heart rate variability. Early intervention guided by these technologies—through hydration, rest, or timely analgesic administration—reduces the frequency, severity, and duration of pain episodes. Similarly, early detection of hemolytic events and organ stress allows clinicians to intervene promptly, mitigating long-term complications such as stroke, pulmonary

hypertension, and chronic kidney disease [35].

2. Improved Adherence and Treatment Efficacy

Digital health platforms, mobile applications, and automated reminders support medication adherence, particularly for disease-modifying therapies like hydroxyurea. Real-time adherence tracking enables clinicians to adjust therapy proactively, maximizing efficacy and minimizing adverse effects. Enhanced adherence contributes to higher fetal hemoglobin levels, fewer crises, and improved hematologic stability, directly impacting clinical outcomes [36].

3. Empowerment and Self-Management

Digital health tools empower patients by providing continuous feedback on physiological status and disease trends. Self-monitoring fosters a sense of control, enabling patients to make informed decisions regarding hydration, activity levels, and exposure to environmental triggers. This empowerment reduces anxiety, enhances confidence in self-care, and encourages active participation in disease management, which collectively improve psychosocial well-being [37].

4. Reduced Healthcare Utilization and Economic Burden

Remote monitoring, telemedicine consultations, and predictive alerts reduce the need for emergency visits and hospital admissions. Patients experience fewer interruptions in education or employment, while healthcare systems benefit from decreased resource utilization. These reductions in hospitalization and acute care not only improve patient quality of life but also alleviate financial and logistical

burdens on families and healthcare systems, particularly in regions with limited access to specialized care [38].

5. Enhanced Psychosocial and Emotional Well-Being

SCA patients often experience chronic pain, fatigue, and social isolation, which contribute to emotional distress and reduced quality of life. Digital platforms that integrate peer support, telemedicine access, and real-time communication with clinicians provide reassurance and continuity of care. The ability to track health parameters, anticipate crises, and receive timely interventions diminishes uncertainty and stress, fostering improved mental health outcomes [39].

6. Personalized Care and Long-Term Prognosis

The combination of genomic diagnostics, continuous monitoring, and predictive analytics enables tailored treatment strategies that optimize both short- and long-term outcomes. Personalized interventions can mitigate disease progression, reduce cumulative organ damage, and improve overall survival. By aligning therapy with individual disease profiles, patients achieve better functional status, greater participation in daily activities, and enhanced overall quality of life [40].

Conclusion

Technological advancements are revolutionizing the diagnosis, monitoring, and treatment of SCA, offering unprecedented opportunities to improve clinical outcomes and quality of life. High-throughput genomic diagnostics, point-of-care testing, wearable biosensors,

telemedicine platforms, and gene- and cell-based therapies are collectively enabling precision, proactive, and patient-centered care. These innovations facilitate early detection, continuous physiologic monitoring, personalized therapeutic interventions, and predictive management of complications, transforming SCA from a disease defined by episodic crises to one managed through continuous oversight and individualized strategies. Beyond clinical efficacy, these technologies empower patients to engage actively in self-management, enhance adherence to therapy, and improve psychosocial well-being. They also optimize healthcare resource utilization, reduce hospitalizations, and expand access to specialized care, particularly in resource-limited settings. However, successful integration requires addressing challenges related to equitable access, ethical use, data privacy, and infrastructure development, ensuring that technological benefits are globally inclusive.

References

1. Inusa, B. P. D., Hsu, L. L., Kohli, N., Patel, A., Ominu-Evbota, K., Anie, K. A., & Atoyebi, W. (2019). Sickle Cell Disease-Genetics, Pathophysiology, Clinical Presentation and Treatment. *International journal of neonatal screening*, 5(2), 20. <https://doi.org/10.3390/ijns5020020>
2. Salinas Cisneros, G., & Thein, S. L. (2020). Recent Advances in the Treatment of Sickle Cell Disease. *Frontiers in physiology*, 11, 435. <https://doi.org/10.3389/fphys.2020.00435>

3. Adewoyin A. S. (2015). Management of sickle cell disease: a review for physician education in Nigeria (sub-saharan Africa). *Anemia*, 2015, 791498. <https://doi.org/10.1155/2015/791498>
4. Liu, J., Yang, L., Liu, D., Wu, Q., Yu, Y., Huang, X., Li, J., & Liu, S. (2025). The role of multi-omics in biomarker discovery, diagnosis, prognosis, and therapeutic monitoring of tissue repair and regeneration processes. *Journal of orthopaedic translation*, 54, 131–151. <https://doi.org/10.1016/j.jot.2025.07.006>
5. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. *Frontiers in oncology*, 10, 1387. <https://doi.org/10.3389/fonc.2020.01387>
6. Kalpatthi, R., & Novelli, E. M. (2018). Measuring success: utility of biomarkers in sickle cell disease clinical trials and care. *Hematology. American Society of Hematology. Education Program*, 2018(1), 482–492. <https://doi.org/10.1182/asheducation-2018.1.482>
7. Conran, N., & Belcher, J. D. (2018). Inflammation in sickle cell disease. *Clinical hemorheology and microcirculation*, 68(2-3), 263–299. <https://doi.org/10.3233/CH-189012>
8. Ansari, J., & Gavins, F. N. E. (2019). Ischemia-Reperfusion Injury in Sickle Cell Disease: From Basics to Therapeutics. *The American journal of pathology*, 189(4), 706–718. <https://doi.org/10.1016/j.ajpath.2018.12.012>
9. Dash, U. C., Bhol, N. K., Swain, S. K., Samal, R. R., Nayak, P. K., Raina, V., Panda, S. K., Kerry, R. G., Duttaroy, A. K., & Jena, A. B. (2025). Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. *Acta pharmaceutica Sinica. B*, 15(1), 15–34. <https://doi.org/10.1016/j.apsb.2024.10.004>
10. S., S., Hegde, S. V., Agarwal, S. V., Ns, D., Pillai, A., Shah, S. N., & S, R. (2024). Biomarkers of Oxidative Stress and Their Clinical Relevance in Type 2 Diabetes Mellitus Patients: A Systematic Review. *Cureus*, 16(8), e66570. <https://doi.org/10.7759/cureus.66570>
11. Mohammad, S. N. N. A., Iberahim, S., Wan Ab Rahman, W. S., Hassan, M. N., Edinur, H. A., Azlan, M., & Zulkafl, Z. (2022). Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. *Diagnostics (Basel, Switzerland)*, 12(6), 1374. <https://doi.org/10.3390/diagnostics12061374>
12. Mikobi, T. M., Tshilobo Lukusa, P., Aloni, M. N., Lumaka, A. Z., Kaba, D. K., Devriendt, K., Matthijs, G., Mbuyi Muamba, J. M., & Race, V. (2018). Protective BCL11A and HBS1L-MYB polymorphisms in a cohort of 102 Congolese patients suffering from sickle cell anemia. *Journal of clinical laboratory analysis*, 32(1), e22207. <https://doi.org/10.1002/jcla.22207>
13. Smith, A., & McCulloh, R. J. (2015). Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. *Frontiers in physiology*, 6, 187. <https://doi.org/10.3389/fphys.2015.00187>
14. Schaer, D. J., Vinci, F., Ingoglia, G., Tolosano, E., & Buehler, P. W. (2014). Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.

Frontiers in physiology, 5, 415. <https://doi.org/10.3389/fphys.2014.00415>

15. Heeney, M. M., & Ware, R. E. (2010). Hydroxyurea for children with sickle cell disease. *Hematology/oncology clinics of North America*, 24(1), 199–214. <https://doi.org/10.1016/j.hoc.2009.11.002>

16. Bodaghi, A., Fattahi, N., & Ramazani, A. (2023). Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. *Heliyon*, 9(2), e13323. <https://doi.org/10.1016/j.heliyon.2023.e13323>

17. Qoronfleh, M. W., & Al-Dewik, N. (2025). Cancer Biomarkers: Reflection on Recent Progress, Emerging Innovations, and the Clinical Horizon. *Cancers*, 17(18), 2981. <https://doi.org/10.3390/cancers17182981>

18. Abraham, A. A., & Tisdale, J. F. (2021). Gene therapy for sickle cell disease: moving from the bench to the bedside. *Blood*, 138(11), 932–941. <https://doi.org/10.1182/blood.2019003776>

19. Germino-Watnick, P., Hinds, M., Le, A., Chu, R., Liu, X., & Uchida, N. (2022). Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. *Cells*, 11(11), 1843. <https://doi.org/10.3390/cells11111843>

20. Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. *Trends in biotechnology*, 31(7), 397–405. <https://doi.org/10.1016/j.tibtech.2013.04.004>

21. Obeagu, E. I., & Obeagu, G. U. (2024). Malnutrition in sickle cell anemia: Prevalence, impact, and interventions: A Review. *Medicine*, 103(20), e38164. <https://doi.org/10.1097/MD.000000000000038164>

22. Obeagu E. I. (2024). Maximizing longevity: erythropoietin's impact on sickle cell anaemia survival rates. *Annals of medicine and surgery* (2012), 86(3), 1570–1574. <https://doi.org/10.1097/MS9.00000000000001763>

23. Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-Editing Technologies: Principles and Applications. *Cold Spring Harbor perspectives in biology*, 8(12), a023754. <https://doi.org/10.1101/cshperspect.a023754>

24. Watts, J. K., & Corey, D. R. (2012). Silencing disease genes in the laboratory and the clinic. *The Journal of pathology*, 226(2), 365–379. <https://doi.org/10.1002/path.2993>

25. Zhu, Y., Zhu, L., Wang, X., & Jin, H. (2022). RNA-based therapeutics: an overview and prospectus. *Cell death & disease*, 13(7), 644. <https://doi.org/10.1038/s41419-022-05075-2>

26. Glaros, A. K., Razvi, R., Shah, N., & Zaidi, A. U. (2021). Voxelotor: alteration of sickle cell disease pathophysiology by a first-in-class polymerization inhibitor. *Therapeutic advances in hematology*, 12, 20406207211001136. <https://doi.org/10.1177/20406207211001136>

27. Bhalla, N., Bhargav, A., Yadav, S. K., & Singh, A. K. (2023). Allogeneic hematopoietic stem cell transplantation to cure sickle cell disease: A review. *Frontiers in medicine*, 10, 1036939. <https://doi.org/10.3389/fmed.2023.1036939>

28. Obeagu, E. I., & Obeagu, G. U. (2024). Management of diabetes mellitus patients with sickle cell anemia: Challenges and therapeutic approaches. *Medicine*, 103(17), e37941. <https://doi.org/10.1097/MD.000000000000037941>

https://doi.org/10.1097/MD.000000000000037
941

29. Obeagu, E. I., & Obeagu, G. U. (2024). Managing gastrointestinal challenges: Diarrhea in sickle cell anemia. *Medicine*, 103(18), e38075. <https://doi.org/10.1097/MD.000000000000038> 075

30. Gyurkocza, B., Rezvani, A., & Storb, R. F. (2010). Allogeneic hematopoietic cell transplantation: the state of the art. *Expert review of hematology*, 3(3), 285–299. <https://doi.org/10.1586/ehm.10.21>

31. Khurana, K., Mahajan, S., Acharya, S., Kumar, S., & Toshniwal, S. (2024). Clinical Biomarkers of Acute Vaso-Occlusive Sickle Cell Crisis. *Cureus*, 16(3), e56389. <https://doi.org/10.7759/cureus.56389>

32. Silva, D. G., Belini Junior, E., Carrocini, G. C., Torres, L. de S., Ricci Júnior, O., Lobo, C. L., Bonini-Domingos, C. R., & de Almeida, E. A. (2013). Genetic and biochemical markers of hydroxyurea therapeutic response in sickle cell anemia. *BMC medical genetics*, 14, 108. <https://doi.org/10.1186/1471-2350-14-108>

33. McGann, P. T., & Ware, R. E. (2015). Hydroxyurea therapy for sickle cell anemia. *Expert opinion on drug safety*, 14(11), 1749–1758. <https://doi.org/10.1517/14740338.2015.1088827>

34. Chehelgerdi, M., Chehelgerdi, M., Khorramian-Ghahfarokhi, M., Shafieizadeh, M., Mahmoudi, E., Eskandari, F., Rashidi, M., Arshi, A., & Mokhtari-Farsani, A. (2024). Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. *Molecular cancer*, 23(1), 9. <https://doi.org/10.1186/s12943-023-01925-5>

35. Lee, T. L., & Sawai, T. (2024). Navigating equity in global access to genome therapy expanding access to potentially transformative therapies and benefiting those in need requires global policy changes. *Frontiers in genetics*, 15, 1381172. <https://doi.org/10.3389/fgene.2024.1381172>

36. Djordjevic, D., McFadyen, A., & Anderson, J. A. (2023). Ethical challenges and opportunities in the development and approval of novel therapeutics for rare diseases. *The journal of medicine access*, 7, 27550834231177507. <https://doi.org/10.1177/27550834231177507>

37. Wang, S. X., Huang, Z. F., Li, J., Wu, Y., Du, J., & Li, T. (2024). Optimization of diagnosis and treatment of hematological diseases via artificial intelligence. *Frontiers in medicine*, 11, 1487234. <https://doi.org/10.3389/fmed.2024.1487234>

38. Obeagu, E. I., & Obeagu, G. U. (2024). Implications of climatic change on sickle cell anemia: A review. *Medicine*, 103(6), e37127. <https://doi.org/10.1097/MD.000000000000037> 127

39. Obeagu, E. I., Ubosi, N. I., Obeagu, G. U., Egba, S. I., & Bluth, M. H. (2024). Understanding apoptosis in sickle cell anemia patients: Mechanisms and implications. *Medicine*, 103(2), e36898. <https://doi.org/10.1097/MD.000000000000036> 898

40. Obeagu, E. I., & Obeagu, G. U. (2024). Telomere Dynamics in Sickle Cell Anemia: Unraveling Molecular Aging and Disease Progression. *Journal of blood medicine*, 15, 313–323. <https://doi.org/10.2147/JBM.S462758>